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Comparing Infinites 
 
1. An  S   set is subset of  T   or narrower than  T  or  T  is a superset of   S   or wider than  S 

or in abbreviated form  S  T   if all elements of   S   are elements of  T  too:   
e    S     e   T. Or more precisely, using  the     quantor for the “all”  or “every”     
condition:   e ( e    S     e   T ) . This of course allows that  S = T  that is they have 
the same elements. That’s why the    symbol “contained” the equality. 
By claiming that   S   is a proper subset of  T, we mean that there are elements of  T   that 
are definitely not in  S  and we denote this as  S   T. We could say that then  S  is 
“smaller” than   T   but we won’t because we want to use this word for a true quantitative 
comparison. So, instead: 

        An  S  set is smaller than  T  or in abbreviated form   S < T,  if for any   f   function defined    
        on   S  and having values in  T,  the  f  values can not take up all the   T  elements. 

So, for any  f  we define on  S  with having values in  T,  there is at least one   t   element 
of    T   that is not taken up as value for any  s   element of  S,  that is   f (s)   t. 
Of course, the part of our assumption that  f   only takes up values in  T  can be omitted 
because the impossibility for those that stay inside  T  would make it also impossible for 
others and in reverse obviously too. To avoid the condition of being defined only in  S  can 
not be omitted because other  f   values defined on somewhere else could always take up 
the full  T. For example by using the  T  elements assigned to themselves. Yet actually 
even this condition of being defined on  S  can be avoided. First of all, if we only know 
that  f  is defined in  S  but not necessarily on  S,  that is not for all values, then this makes 
the impossibility stay.  Now if  f  is defined anywhere then we can still simply regard the 
values only in  S  and claim about these that they can not produce all  T  elements. So: 
For all  f   functions, there is a   t   in  T   that for all  s  in  S  :  f (s)   t. 
Abbreviating the “there is” condition as     and negation as    our definition becomes: 
S < T  :    f    t  s  [ (t   T) and ( s  S    f (s) = t ) ].  
We can use  f (  )  not just for the assigned values to values placed into  (  ) , but for sets of 
values and giving the sets of the assigned values. So  f (R)  then denotes all the  f  values 
assigned to  R  elements as set. Of course this doesn’t have to mean that  f  is defined on 
all   R  elements. We only collect the values where it exists. So  f (R)  can even be empty. 
We can call  f (R)  as the image of  R  by  f. In particular, using the full  S  then the  f (S)   
image means the collection of all values assigned to  S  elements and this not having all the 
elements of   T  means that  T  is not a subset of  f (S). So the  f (S)  image of  S  by  f   can 
not cover the full  T. Then the formal definition is even simpler too:     f     f (S)   T. 
So the subset relation still helped a lot. This of course includes equality. If however we 
know that  f  is only picking up values in  T   then   f (S)   T  means actually f (S)   T. 
So with such functions the shortest and also clearest definition is  S < T  :    f   f (S)   T.  

 
2.     Among finite sets we have as intuition that not only the part is smaller than the whole, but 

the above defined   f   assignments will also remain smaller. Indeed, say we have ten 
apples. If to seven of them we assign some other fruits say oranges, then these assigned 
oranges can not become more than seven. They can easily become less than seven if we 
assign common oranges to different apples. If we don’t assign common oranges to 
different apples, that is our  f   function is a one to one assignment or so called equivalence 
then we’ll have exactly seven oranges. 
Among infinites the part of a set can become the whole with a smart assignment. 
The simplest example is the set of the natural numbers. If we leave out  1   then we get 
only   2  ,  3  ,  4  ,  5  ,    .    .    .     Now, if we assign to each of these the previous natural, 
that is  f   is defined as   f (n) = n  – 1  then the image of this subset that is  f { 2 , 3 ,  .  .  .  } 
will become the full set of naturals.  
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Here again our smart assignment was one to one but we can make easily a non one to one 
that will do the trick too. For example we could assign to the first two values in our subset, 
that is to   2   and  3   the common   1   value and then to every   n   number  n  – 2.  
We’ll get again all the naturals. 
The definition in  1.  obviously has only usefulness if there are sets where no smart   f   can 
achieve a full image. That such smaller versus bigger infinites do exist was not recognized 
up until the end of the nineteenth century. Cantor single handedly created Set Theory by 
not only discovering that there are such smaller versus bigger infinites but at once showing 
how this fact can prove things that are hard to show otherwise. Indeed, the existence of 
non fractional, that is irrational numbers was a main concern of already Greek 
mathematics. Today with our ten based “Arabic” or rather Indian number system extended 
to infinite decimals and with the added digital method of division process among naturals, 
we can see at once that the fractions are exactly the periodic decimals and so the irrational 
are the non periodic decimals. So these not only exist but should be much more. 
Cantor’s discovery that the decimals are not sequencable, that is to the naturals we can not 
assign decimals so that all decimals would become assigned, gave a way to see this bigger 
feeling we get from the non periodic versus periodic. Indeed, the fractions or the periodic 
decimals are sequencable. Though this itself was not recognized before Cantor either. 
To list all the fractions is quite easy by simply going in increasing totals of the numerators 
and the denominators. With  2  total we have only one fraction  1   as numerator an also as 
denominator. With  3  total we have two fractions using the numbers  1  and  2. Then with 
4  total we can use  1 , 3   or  2 , 2  which gives three possible fractions. So for every total 
we have only finite many variants and these can all be listed one by one. 
By the way, this listing is not one to one. We repeat same fractional values. But this 
doesn’t reduce our result’s surprise nor use. Indeed, the fractional values, or only between  
0  and  1  could be circled in our list when first encountered and this would be a sub 
sequence. Cantor’s famous proof showed that already the decimals between   0   and  1   
are a non sequencable set. This proves that there are decimals that are not fractions without 
the insight about the periodicalness. But we could doubt the real usefulness of set 
comparisons from this result alone. The real conquest was to use the same argument for a 
much later obsession than the Greek irrationality. Namely for the non algebraic numbers. 
The algebraic numbers are those that are roots of polynoms with fractional coefficients. 
This obviously includes all fractions themselves but lot of irrationals are algebraic too. 
So, the idea that maybe all numbers are algebraic is not so far fetched, though was guessed 
to be false by everybody. But to prove this was only possible by showing concrete infinite 
decimals that can not be roots of any fractional polynom. This was very difficult.  
Yet Cantor’s result that the decimals are not sequencable works again because the set of all 
algebraic numbers are again sequencable. In fact, even the argument is similar as was for 
the fractions. First we can list all the fractional polynoms and these all have only finite 
many roots and thus these finite sets after each other give again a list. 
So, there shouldn’t have been any resistance or hostility against Cantor. Yet there was!  

 
3.     The one to one assignment or equivalence is the exact keeper of equality among finite sets. 

This in itself is a practically useful fact!  
Indeed, for huge numbers the actual counting might be much more difficult than a simple 
comparison. If for example we have a ball room then to decide who are more, the boys or 
girls, is easy by simply to ask them to form pairs. Which ever is left without pair is more. 
For infinite sets things are different because a proper subset of an  S  set can be equivalent 
to the whole  S. We showed it for the naturals and the subset by leaving out   1. 
But we can leave out more and still get a sequence so also an obvious equivalence:      

    
1       2        3       4       5      6       .      .      .      .       
                                 
5       6        7       8       9     10      .      .      .      .        
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Even more surprising is that “half” of the infinite set can be equivalent to the whole. 
        Indeed, the even or odd numbers are both equivalent to the total set of naturals:  

 
 1       2       3       4       5      6      .      .      .      .       
                                     
 1       3       5       7       9     11     .      .      .      .       
                                 
 2       4       6       8      10    12     .      .      .      .       

 
Amazingly, already Galileo noticed this strange fact when he quite falsely quantized the 
law of falling bodies. He realized that if a body falls a  d   distance in a first time interval 
say second, then in the second it falls  3d,  then  5d,  and so on for all odd numbers.  
This fact is true but:  d  +  3d  =  4d   ,  d  +  3d  +  5d  =  9d  ,  and so on.  
Thus the total fallen distance is always   n 2 d  up until the end of the  n-th  second. 
This is the real important fact because this way we at once know the total fallen distance 
up to any   t   time. Indeed, for example up to   2.7  second the fall is simply  2.7 2 d  . 
Recently, I observed a quite shocking consequence of the previous shifting paradox, in fact 
actually for its original simplest case that is merely shifting the naturals with one step: 
Imagine beggars sleeping on the side of an infinite road. Suppose they all have only few 
coins in their hats in front of them and all have at least one ten cent coin among these. 
To steal even this ten cent from one of them would be cruel and probably they’d notice it 
in the morning anyway. Yet, if we steal that coin from the first beggar but replace it from 
the second and then replace that from the next and so on, then in the morning we “created” 
an extra ten cent “out of nothing”.    

 
4. A   c   function on an  S  set, in other words an assignment of  c (s)  values to all s   S,  
        is called a choice function on  S  if for all  s  it is true that:  c (s)   s.  

The values themselves could also be called as a sample taken from  S  if the different   S  
elements are regarded like the full range of the main variants while the elements of these  s  
elements as minor. This is how a chocolate sample box is created for a company.  
An actual problem in making a sample set happens if the different   s    elements have 
common members. Indeed, we might pick such common element and then these should be 
regarded twice. But of course sets don’t allow duplicates or rather they melt into a single. 
With using the   c   choice function this problem is avoided. Even if  c (s) = c (t) = v,  the  c 
choice function is actually the collection of the  (s , v)  pairs and so (s , v )   (t , v). 
The minor problem of how to replace these ordered  (  ,  )  pairs with actual  {   }  set 
collections was solved as :  (s , v) = { s , {s , v}} . Ugly but works!  
The set of all choice functions on  S  is called the product set of  S  and denoted as    S . 
The basic and actually only method of creating bigger infinite sets is a relative claim that 
uses this product set and also the much simpler combined set concept. 
The union of two sets is simply combining all elements of the two sets into one set: 
S   T  =  { e ;  e   S  or  e   T } 
To unite infinite many sets is also easy by first regarding these as elements of an  S  set. 
So actually the   s   elements of   S   must be united which means that the elements of these 
s   elements must be combined. In precise terms this means to collect all such  t  sets of the 
world that are elements of some  s   elements of   S. To be even more precise, the “some” 
here meant that “there is”, so:     S  =  { e ;   s  e   s   S } 
The vital theorem using the union and product is called König’s Theorem: 
 
If for all  s  elements of an  S  set, we know some  k (s)  <  s  sets, then the combined set of 
these smaller sets is still smaller than the product set of   S.  
So our claim is using the combined elements of the smaller   k  values which is actually the 
union set of the  k  image of  S,  that is of  k (S). So in quite short form:     k (S)  <    S .  
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Proof: 
We have to show that for any  f  defined on    k (s), there is a  0c      S  not being a 

value of  f. We’ll look at  f  first only within a  k (s).  
Since  k (s)  <  s  thus, f ( k (s) )  <  s  too.  
Every  c     f ( k (s) )  picks an element from  s, but since  f ( k (s) )  <  s, they can not pick 
all elements of  s. There is  0s   missing as picked element, and so none of the  f ( k (s) )  

choice functions can pick this  0s .  

Picking such missing  0s   from every  s, we get a  0c   that can not be value of  f ( k (s) )  

for any  s  and thus, can not be a value of  f  in the combined    k (S)  either.  
 
5. There is a much simpler, almost trivial relative way to get a bigger set, namely, by simply  
        combining a sequence of  1S  , 2S  ,  .  .  .  sets, if  1S  < 2S  <  .  .  .  stands too. 

Then, 1S    2S     .  .  .   >  nS .  

Indeed, an  f  on  nS   can not take up all  1 n S    elements, by our condition, and thus, can 
not pick up all combined elements even more.  
Interestingly, König’s Theorem can create a set even bigger than  1S    2S     .  .  . , 

namely  2S    3S    .  .  .  , if by this product we mean the  2s  , 3s  ,  .  .  .  sequences 

picked from the corresponding sets.  
These are mere alternatives to choice functions. 
Indeed, a sequence is a function   n    ns   while a choice function is  nS    ns .  

The use of König’s Theorem can be done with defining the  k  function as   1 n S     nS , 

that is  k ( 1 n S  )  =  nS .  

The condition directly gives  k ( nS )  < nS   and the claim is also directly the claim of 
König’s theorem.  

 
6.  The most famous application of König’s Theorem is with a “minimal” usage of the  

condition  k (s)  <  s  by  k (s)  being a single element set, while  s  being a two element set.  
So, we regard any  D  set and a standard two element set, like  { head , tail }  or  { 1 , 0 }  
or  { yes , no }. These fix values can be attached to all  d  elements of  D, that is we regard 
the  { (d , head)  ,  (d , tail) }  pairs of ordered pairs as the  s  elements.  
Then  k (s)  =  { d }  are the single sets and   k (S)  =  D  itself.  
  S  is the set of all possible  head   or   tail  containing pair choices from the  s  elements, 
which actually means head or tail choices for the  d  elements too.  
The  yes , no  meaning can be regarded as a selection of  d  elements and so the yes 
choices as subsets of  D.  
Thus, we obtain at once that the possible subsets of a  D  set is a bigger set than  D.  
This is usually written as  D2  > D. Indeed, in general, DR   is denoting the set of functions 
from a  D  domain to the  R  range values and so  D2   abbreviates  { yes , no D} . 

 
7. Using the naturals { 1 , 2 , 3 ,  .  .  .  }  as  D  and the ten digits  { 0 , 1 , . . , 9 }  as  R,  
        the sequences of digits can represent the elements of  DR .   
        Placing a decimal point in front, we get the possible infinite decimals. 
        Like:    . 3 6 0 4  .  .  .     which also represents a point on the unit interval. 

The set of these decimals is bigger than the naturals. In short, we can not sequence all 
decimals. Cantor’s original proof of this went as follows:  
Suppose we could list all decimals as:  

. 3 6 0 4  .  .  .   ,    . 2 0 5 7 .  .  .    ,    .  0 5 2 3 .  .  .    ,    . 5 3 7 9 .  .  .    ,    .   .   . 
 
Lets regard the  D  decimal that has as its  n-th  digit, exactly the  n-th  digit of the  n-th  
decimal in the list. So, for our example, D  would be:  . 3 0 2 9 .  .  .   
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This   D   could easily be one of ours in the assumed list. 
But now alter every digit in this  D, for example, add  1  to all, and thus obtain: 
D* =  .  4 1 3 0  .  .   This definitely can not be in our list because it differs from the first in 
its first digit, differs from the second in its second digit, and so on. 

        The   D   number appears as the diagonal number if we write our list of decimals not after  
        each other rather under. Then  D*  is the anti diagonal or rather “an” anti diagonal, since 
        we had free choices as other digits.  
        The method itself became known the anti diagonal argument. 
 
8.  Cantor’s logical question was whether this bigger set of the decimals or the corresponding 

points of an interval could have a subset, that is smaller, but still not sequencable, that is, 
bigger than the naturals. In short: 
Is there an infinite between the simplest infinity of the naturals and the continuum.  
His hunch was the  “no”  answer, and this became the Continuum Hypothesis.  
It turned out to be an undecidable problem, but its mystery remains.  
The binary sequences as  head , tail  outcomes connects to randomness too, and that 
became a huge field, but it didn’t resolve the Continuum Hypothesis.  
The identification of the decimals with the actual continuum of the points might already 
contain some problems. The ancient point paradoxes might have deeper meanings. 
 

9.     Cantor explored the continuum that is the interval as point set on its own too. 
The famous Cantor Set for example is defined here. So actually Cantor started Topology. 
Without going into that, we should still mention that the anti diagonal argument can be 
placed onto the actual line too. So the task is now to see that the points of an interval can 
not be sequenced. The first point of a sequence in our interval splits the interval into two. 
Unless we picked as first point one of the end points. This doesn’t matter because all we 
need is a new interval inside that avoids the first point of the sequence. The second point 
probably is outside of this but might be in or even at the ends. At any rate we can easily 
find a new interval inside that avoids the point. Continuing this, we get intervals nested in  
each other and avoiding all the points of our sequence. But these intervals must contain 
some common points. They diminish in length but might not diminish to arbitrary small 
length and then we feel that such length of final interval is there too. But even if they do 
diminish to arbitrary small lengths, a common point must be still there.  
As we see a lot of dubious assumptions are present here. To see that not everything is so 
obvious, we should realize that nested intervals can narrow down to nothing.  
This is the case if we use intervals where only one end is included but say the left one isn’t. 
Indeed, regarding the ( 0 , 1 ] , ( 0 , 0.5 ] , ( 0 , 0.25 ] always halved left open intervals, the 
only common point could be  0  but it is not included in any of them. 
Thus Cantor’s so called common point axiom for the continuum used closed intervals. 
A much better axiomatization was achieved by Dedekind. He assumed that the line is an 
ordered point set in such a way that if we cut the line into two “halves” then either the left 
half must have a rightmost point or the right half must have a leftmost point. 
Since there are only four possibilities, we could also say that both or none of the halves 
having last points is impossible. The first would mean two points having nothing  between 
and this is obviously impossible by our intuitions. No end points at all would mean a hole 
again though less obviously. At any rate, from this Dedekind axiom the Cantor common 
point axiom follows for closed intervals and so the closedness comes out and doesn’t have 
to be assumed as ad hoc. 

 
10.  The precise development of Set Theory relies on the famous Axiom of Choice.  

This claims the existence of  c  choice functions, but as we saw, it is not needed to see the 
bigger sets, because simple two fix valued functions already lead to this.  
The Axiom of Choice, is still vital to get the so called Well Ordering Theorem, needed to 
compare all sets. 
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Our definition of  S < T  was a bit over simplified and could by itself allow quite easily 
that neither of   S < T  and  T < S  stand because we can find functions that image both full 
sets from the other. This would not be so horrible, after all then we could regard this as 
their equality in size. But then this should imply the mentioned other original meaning of 
equal size, the one to one function or equivalence. 
The other possibility that both of   S < T   and   T < S  stand would be quite contradictory 
for a comparison. But we couldn’t claim either that for any two sets one must exactly stand 
because of the previously mentioned equivalence or formally   S ~ T .  
So actually exactly one of   S < T   or  T < S   or   S ~ T  should stand always. 
To prove this, we better regard a new “flexible smaller”    relation that doesn’t claim that   
S   is definitely smaller merely that definitely not bigger than  T. 
And we have an intuitive way to define this as   S   T  :   S  ~  T’   T. 
Then the claim that  S < T   or  T < S  or   S ~ T  are three exclusive conditions of which 
one of them is always true, boils down to two claims about   .  
Namely, a fairly easy one that  S   T  and  T   S  implies  S ~ T  and a very difficult one, 
that for every  S  and  T  at least one of  S   T  or  T   S  must stand.  
The final result that the  <  smaller relation of set sizes is perfect also means that we can 
then avoid      and use instead      with the usual meaning that smaller or equal. 
The first easy claim is called Bernstein’s equivalence theorem, while the second hard one 
only follows from the mentioned Well Ordering Theorem. 
The fundamental idea of this is the following:  
We start with some  s  and  t  starting elements from  S  and  T  that we assign to each 
other. Then we pick new ones from the outside that is from  S – s  and  T –  t.  We assign 
these again to each other. We continue this and when we get an infinity of wider and wider 
already assigned pairs then we simply combine these. Then for such already assigned   S’ 
and  T’ subsets we can again pick from  S – S’ and  T – T’.  
These widening subsets actually order the elements and so our equivalence is more than an 
equivalence, it is a    similarity between the ordered elements. 
The order itself is actually a list or well ordering that has its own rules. 
The crucial point is that “eventually” one of the  S  and  T  sets must run out of elements 
and so we actually listed this set fully and part of the other. Thus we created a similarity 
between one of the full set and a subset of the other that is : 
S  T’   T  or  T   S’   S  and these of course imply the same as  ~  equivalences. 
The crucial problem with this heuristic method is that it requires the newer and newer 
pickings that is choices as we go ahead. So a timely concept is involved. 
The main vision of axiomatic Set Theory is the collection by a property  { x ; P (x) }. 
So, we collect all those  x  elements that satisfy  P. This is indeed spatial and instantaneous. 

        As it turned out, this collection can become contradictory for some  P  properties. 
The simplest such is  P (x)  =  ( x   x)  or in short  xx. Collecting these  x  sets that are 
not elements of themselves leads to contradiction and this is a problem even if we would 
say that there shouldn’t be such sets that are elements of themselves. Indeed, then still 
collecting these “normal” ones  would simply be the set of all sets. So the contradiction is 
actually in such a full set of all sets but this collection of it as the normals shows the 
contradiction most directly. 
Namely, this {x ; xx } set then neither can be normal nor abnormal because one implies 
the other. Or formally, the basic rule of the property collection  y   {x ; P (x)}     P (y)  
would lead to contradiction used with our  P  and  y = the normal sets: 
{x ; xx }   {x ; xx }       {x ; xx }   {x ; xx }   
But this doesn’t alter the spatial clarity of property collection. In fact, the whole axiomatic 
Set Theory is simply the systematic restriction of what spatial collections are okay. 
Luckily, the amazing result is that we can avoid time here too at the comparison of sets 
and the step by step widening equivalences can be grasped spatially too!  
This is the true technical tour de force of the Well Ordering Theorem. 
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We have to assume choice functions and usually this is the part that is only chewed upon, 
avoiding to reveal the deep problems at the time avoidance itself.  
Aside from this stupidity, an other typical Formalist feature is that we start with the end. 
So regard these orderings on sets on their own and then pull the rabbit out of the hat as: 
“by the way we can then compare sets too”. 
I will try to do differently! But first a detour to later results:   
 

11.   The infinites as sizes can be regarded as generalized numbers or cardinalities. We already     
showed that the crucial method of König’s Theorem can be regarded as D2  > D  with the 
simplest two element choices. The earlier mentioned and much simpler fact that the 
fractions are sequencable can also be looked algebraically.  
Indeed, first of all they can be regarded as infinite many sequences under each other if 
instead of our smart method of going through them by increasing totals, we first list all the 
ones with the fix  1  numerator, then under the ones with  2, and so on:  

 

1
1        

2
1        

3
1        

4
1        

5
1        

6
1        .        .        .        .  

 

1
2       

2
2        

3
2        

4
2        

5
2       

6
2         .        .        .        . 

 

 
1
3       

2
3        

3
3        

4
3        

5
3       

6
3         .        .        .        . 

 
  .         .          .          .          .         . 
 
 
Every stupid decision has its reward and so here too we have the new insight that fixing 
our stupidity that is sequencing the above infinite table means actually sequencing any 
sequence of sequences. If the size of a sequence is denoted as ω  in general then this would 
mean that ω 2 ~ ω .  
This is how usually the sequencing of the fractions shown. That is as sequencing an 
infinite square table. Amazingly, the actual trick can be the same. Indeed we can see the 
increasing totals as  45  degree increasing partial diagonals of our table. We have to walk 
through these diagonals after each other and thus encounter all fractions. 
But we don’t have to use these finite diagonals. We could walk in other manners for 
example through horizontal and vertical steps and make a turn at the infinite diagonal. 
 
The  ω   infinity is actually also used as the abbreviation of the sequence as list type. 
Then   ω 2   should be again a list type namely infinite many sequences after each other. 
These types are simply the common name for lists that can be one to one assigned but 
exactly keeping the order too. We call this being similar and abbreviate it as  S   T. This 
of course implies  S ~ T. The crucial and intuitively also obvious fact is that once two sets 
are well ordered then one has to be similar to a beginning of the other. So among these 
types we have this as a new smaller or bigger relation that I will mark as    . 
So, for example  ω  ω 2  simply meaning that  ω   is a beginning of  ω 2. 
All this seems so trivial but actually there are surprises! They start with the earlier fact that 
all beginnings of  ω   can be cut off or omitted and we are left with the same type.  
In reverse too, adding a finite segment to the front will simply melt in:  3 + ω  = ω . 
Of course 1  ,  2  ,  3  ,   .   .   .  1  ,  2  ,  3    or in short  ω  + 3   ω   because we can not 
make these similar. This at once shows too that unlike at  ω   where any beginning is 
omittable, here at  ω  + 3  the full  ω    or  ω  + 1  or ω  + 2  are not omittable beginnings 
because these would leave only  3  or  2   or  1. 
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The fully omittable list types are those where all beginnings are omittable and the first 
such after  ω   is   ω 2   that is, a sequence of sequences. The most obvious fact is that there 
can not be a maximal omittable beginning of an infinite type because if the  B   beginning 
is omittable then  B + 1  is also omittable because  1  is omittable from anything infinite. 
If we combine all the omittable beginnings of a  T  then it is either the full  T  and so  T  is 
a fully omittable or the total is still a beginning and then it is the first non omittable  A.  
Cutting this  A  off we might think that it can not be cut off again from what remained as 
the end of  T  but we are wrong. For example in ω  + ω  + ω  + 3  we can cut off the same  
ω   three times to alter the list. Luckily, this can happen only finite many times.  
Simply because from  A + A + A +  .  .  .  we could cut of  A. So this shows that in quite 
general the next fully omittable type after an  A  is the  A + A + A +  .  .  .     = ωA. 
After the  A  , ωA ,  ω (ωA )  ,  ω (ω (ωA))  ,   .   .   .   fully omittable types the next is 
quite simply the combined type of these but strangely it is also the same as the sum of 
these :   A + ωA + ω (ωA ) + ω (ω (ωA))  ,   .   .   .    
If  A  is the first non omittable beginning of a type then the fact that  ωA  would be a 
bigger means that actually the type has to start as  a A  with an  a  largest natural number. 
Cutting this  a A  off the end part again has a  B  first non omittable beginning and it will 
start as   b B.  What’s more,  B  has to be smaller than  A  because otherwise  a A  would 
have melted into  b B. Indeed, the last  A  would be a beginning of the first  B  and  B  
being fully omittable would swallow up  A  and step by step all of the  A-s. 
So every listed or well ordered set is merely an   a A + b B + c C  +  .  .  .    with decreasing 
types in this sum. Surprisingly, this also means that these sums have only finite many 
members. This is a paradox because we just saw that there are infinites and infinites of 
fully omittable types so we could envision infinite many of them combined except in 
reverse order. Actually this is the error because we can not envision infinite many in 
reverse order. Or rather, we have to sharpen our visioning. What helps a little is to realize 
that already the naturals is an infinity of increasing numbers but we can only list finite 
many in decreasing order. Once we pick a first, we are screwed and can pick only from a 
finite many. In a list in general, if we pick an element then we will have infinite many 
elements before and infinite many after the picked one. So it seems we are not screwed at 
once. But the very nature of the list that it always requires a next element after any stage of 
earlier elements, actually means that not just the later ones after a stage must have a first 
but actually any subset of elements must have a first. Simply because we can regard all 
stages before encountering any elements of the subset. And then the total of these stages is 
a maximal such stage and the next element is the minimal of the subset. 
A backward going infinite sequence were obviously a subset without minimal element. 
Surprisingly though, not having such sequences, at once implies that all subsets must have 
minimal. Indeed, suppose we had any subset without a minimal. Then we can just pick an 
element there in the subset. The smaller ones can not have a minimal again because that 
would be in the whole set too. So we can pick a new arbitrary element again and so on. 
Returning to the fact that all list types are   a A + b B + c C  +  .  .  .  + z Z,   this gives a 
method to show that  A 2  =  A + A +  . . .  A + A +  . . .  +  can be one to one assigned into  
A  itself. And so these types lead to the universal size law of  S 2 ~ S  for all infinite  S. 
Remember that this is the sequencability of the fractions when  S   is simply the naturals. 
The simplest consequence of König’s Theorem said that  S2  > S  and this was actually 
Cantor’s first breakthrough again for  S  as  the naturals. The two of course means together 
that the fractions are less than the infinite decimals so there are irrationals but Cantor used 
it for also showing that there are non algebraic numbers. The general two laws interrelate 
in even more amazing ways. Actually this relation of them helps to throw some light on 
why Cantor’s fundamental question whether there is or isn’t infinity between the naturals 
and the continuum is so difficult: 
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Of course,  S2  > S  also means that using bigger than  2   base that is as choice values for 
functions defined on  S  will be at least as big. But not necessarily bigger because for 
example the decimals use  10  base and they are the same as  2  because base two binaries 
can be used instead. So it’s pretty obvious that finite bases all remain the same. 
The natural guess would be that  SS  should be a jump that is  SS  >  S2 . 
That is not true but to prove the opposite that is   SS ~ S2   would be hapless directly. 
The much much stronger yet easily provable fact is that   ( S2 ) S   ~  S2   too. 
Amazingly, the logic is visible for even finite  S  sets where of course this equivalence is 

not true but our argument is still valid. This argument is basically:  ( S2 ) S  ~ )2S (2  ~  S2 . 
We’ll use   S = 10   for demonstration. 102   is simply the number of   possible binary ten 
digit long numbers. So, the ten positions are the  S  set  and the   0  or  1   digits are the 
choices. Their number is of course 1024. ( 102 )10    should be the ten many such possible 
groups put together, that is the hundred digit long binaries. The number of these is more 
than the atoms in the universe which shows how among finites this form is indeed a huge 
jump. Yet in spite of this, the actual number is the same as  1002   so indeed the exponent is 
simply the square. And this combinatorical fact remains among infinites. This proves our 
claim because regardless that it happens in the exponent  S 2 ~ S  can be applied. So, the 
final condensed form of our finding is that: Exponentiation is not sensitive to the  B  base! 
The jump by choices is not dependent on how many choices we have. From  2  to S2  they 
will give the same size with  S  as exponent. This is the only logical possible range for the 
base because if  B  is bigger than S2  then obviously already  1B   gives value above. 
Back to the  S 2 ~ S  law, it of course implies the weaker  ωS ~ S  law too.  
Now it’s time to introduce the concrete infinities after ω .  
We actually use the list types themselves as so called cardinals to denote the infinites too. 
Namely, the first types that have a size. We can not calculate these cardinals by simple 
type formations and so we just give abbreviated names for them. The first bigger sized list 
type than  ω   is denoted as 1ω   and so this the second cardinal after ω . This is already a 

huge list type much bigger than ω ω   or even using  ω   power ω   many times.  
The first next size after  1ω   is 2ω   and so on.  After ω  , 1ω  , 2ω  , 3ω  ,  .  .  .  comes 

ω
ω . 

Here we have again that  ω  + 1ω  + 2ω  + 3ω  +  .  .  .  = 
ω

ω  by simply the melting in. 

So this is also a first concrete case of the earlier mentioned obvious fact that for increasing 
sized sets:  1S    2S     .  .  .   >  nS . 

Here it’s even more evident that all the members are smaller than  
ω

ω   and so we tend to 

jump to the conclusion that then: 

ω
ω  =  ω  + 1ω  + 2ω  + 3ω  +  .  .  .   <  

ω
ω + 

ω
ω + 

ω
ω +   .  .  .   = ω

ω
ω  =  

ω
ω . 

A contradiction. But our arithmetical logic was the logic of finite sizes. 
Among infinites, definitely increasing the parts will not necessarily increase the total! 
On the other hand, König’s Theorem does imply that: 

ω
ω  =  ω  + 1ω  + 2ω  + 3ω  +  .  .  .   <  

ω
ω   

ω
ω   

ω
ω    .  .  .   =   (

ω
ω )ω . 

But this exponentiation is the original size meaning one, that is with choice functions. 

This is important because as we just discovered above:  (2ω )ω   ~  2ω . 

Thus  2 ω ~ 
ω

ω   is impossible and this is important because the earlier mentioned 

Continuum Hypothesis undecidability is much deeper. Namely, we can not place this 
originally guaranteed bigger infinite anywhere in our nice list of cardinalities. 

Well the previous result at lest tells something that the continuum  2ω   can not be. 

Of course, the Continuum Hypothesis claims that   2ω~ 1ω . 
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Back to the  S 2 ~ S  law again,  S 2  can also mean  S  many sets combined all having  S  
many elements. So this also means that if we combine an  S  set as   S   where   S ~ T  
and for all  s   elements of  S  we have  s ~ T  too then   S ~ T  too. From this also follows 
that if  S  T  and  s   T  for all s elements then  S   T  too. So we might simply say 
that combining can not increase the size. But as we saw above this is exactly a way how 
we can always get bigger size. The two facts are not contradicting each other.  
Best is if we regard the negative version of our first claim:  
If  T <  S  then  T < S  or  T < s  for some  s. 
A   S  total can be a limit above the elements. Exceeding them all and easily  S  too. 
Such size is called weakly accessible meaning that it is obtainable by simple combining 
from less many and all smaller sets.  
The claim merely says that any size less than such weakly accessible limit will be 
exceeded by some member or  S  itself. What does follow from this though is that with 
increasing totals, that is where  S  is bigger than   S   and also all  s  members, there can 
not be a  T  size that is exactly the previous to   S. Indeed,  S  or  an  s   would have to be 
bigger than  T . But above  T   and under   S   there is no size. Negatively, knowing that 
an  R  set has size that has a previous  T,  means that  R  can not be obtained as   S  that 
exceeds  S  and its members. For cardinals this means that if they have a previous that is 
they are not limit cardinals then they are automatically not weakly accessible. 
So  1ω   that has previous can not be obtained as combining ω   many  ω    sets which is 

trivial. But our claim is now general and so true for all  2ω  , 3ω  ,  .  .  .  as well. 

ω
ω   is of course weakly accessible and needs only  ω   many members. 

We might even jump to the conclusion that all limit cardinals are such but actually this is 
not a logical necessity. The limit as index of a cardinal is not identical with itself being 
limit as weakly accessible. It would only be if the index that is the number of cardinals up 
to it would have to be always less than the cardinal itself. Which seems to be true for all 
concrete cardinals we created but  can not be proved. So we call the hypothetical ones that 
are so big that their index is themselves as the weakly inaccessible ones. 
All this shows that the list types are just seemingly a boring repetitions of going forward 
one by one. Once we ask the right questions about them then they become alive. The more 
concrete direction of the right questions is the counter feature of the mentioned restriction 
that we can only go finite many times backwards. 
Indeed, quite to the contrary we can go forward deeper and deeper and sometimes even 
seemingly rare forward going sub lists can go all the way to the end of the list. These sub 
list are the so called “cofinals”. The fully omittable list types are just the most primitive 
special ones. Every beginning being omittable sounds like everything being at the end, but 
lets call a type itself a cofinal if every cofinal of it must have the same type as the total. 
This is a drastically stronger restriction that pushes everything towards the end. Amazingly, 
it implies at once that such cofinal can not have a beginning that would be the same size as 
the total. So all cofinals are cardinals. The reverse is not true and indeed, 

ω
ω   is a cardinal 

that has smaller cofinal namely a simple sequence. The weakly inaccessible cardinals are 
simply limit cardinals that are cofinals too. 

 
12.   The comparability of all sets is the most basic fact of Set Theory and so the clarification of 

the Well Ordering Theorem is the most important didactical task of mathematics. 
As I already explained, the fundamental problem is how to replace the timely choices with 
a totally spatial set collection. Formally of course we could regard the timely choices as 
predetermined  f   and  g   functions in the  S  and  T  sets. So, we have  s   and  t   starting 
elements there and also these functions that assign some outside elements to some  S’  and 
some  T’  subsets. By outside we mean from  S – S’   and   T – T’.   
We assign  s  and  t  to each other as the start of our  h  equivalence.  
So, our first equivalent subsets are  { s }  and  { t }.  
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Our  f  and  g  functions then pick for these outside elements namely  f { s }  and   g { t }. 
These are again assigned increasing our  h  too. Adding these new elements to the start 
ones, we get the  { s , f { s } }  and { s , f { s } }  sets as second stage equivalent subsets. 
The next stages would be  { s , f { s } , f { s , f { s }}}  and  { t , g { t } , g { t , g { t }}}.  
Both have three elements and indeed those are assigned to each other by  h. 
We get infinite many of these widening sets and then we have to combine them into totals: 
{ s ,  f { s }  ,  f { s , f { s }}  ,   f { s , f { s } , f { s , f { s }}}  ,   .  .  .   }   in  S   and 
{ t ,  g { t }  ,  g { t , g { t }}  ,  g { t , g { t } , g { t , g { t }}}  ,   .  .  .   }  in  T. 
Luckily, this will not cause any problem to establish  h  because the elements were already 
ordered to each other. So we can continue the pickings by  f   and  g. 
The same combining of widening stages that we did above must always be applied and 
these combinings have no effect on   h. It only grows by the new picked elements. 
Having assumed  f  and  g  functions that pick the new elements also means that we at once 
step away from our timely vision a little. After all, we don’t choose and those  f  and  g   
functions are spatially existing choices. To prove that  h  can come about would mean that 
we eliminate time completely! 
Though using predetermined  f   and  g   functions is a big step to avoid the choices step by 
step it also means that the crucial naïve assumption, we made at our plan is false. 
Remember, it was that if we always choose from the outside then since all proper   S’  and   
T’  subsets have such outside, the pickings could only stop if one of our set runs out that is 
we reach   S’ = S  or  T’ = T. Now with  f  and  g   given, the running out could happen 
“any time” if we reach a subset in  S  or  T  where  f  or  g  is simply not defined. 
The amazing surprise is that this seemingly so big problem is not a problem at all! 
We can easily find  f   and  g   functions that never “stop”.  
For example, just showing   f  , let   c   be a choice function on all the real subsets of  S. 
Real of course just means non empty and so these all have elements and so one can be 
picked out from each. The fact that the subsets of  S  are sharing elements is immaterial, 
because our pickings don’t have to be exclusive. Different subsets might have same picked 
elements. So this  c  is a totally spatial vision. As an added beauty, this  c  will not only tell 
our  f   but also our   s   starting element. Namely,  s =  c (S). 
Then if   S’ is a real and proper subset of  S  we make:   f (S’) =  c ( S – S’ ).  
The simple and radical beauty of this breakthrough might falsely make us think that after 
all this whole affair wasn’t so hard. Unfortunately it is still very far from solved. 
More strangely, the difficulty of finding the goal that is  h   from the seemingly so easy  f  
and  g  is better explained if we refuse the silver platter and so again assume not these   f  
and  g   just explained from choice functions, rather even more general ones than before. 
Indeed, at the start we assumed  f  and  g  that pick new elements for some subsets. 
Now we start from arbitrary  f  function, forget  S  and  T  and the vision is this:  
We fix an  s  starting element and simply regard how far  f   can grow from this.  
We again don’t use  f   for  elements already obtained rather for sets obtained. 
So right at the start we regard not whether  f   is defined for  s  rather for the { s }  set. 
If it is, then it still could be that by amazing coincidence  f { s } = s. 
This would mean that adding the  f   value to the initial set, that is widening as: 
{ s }   { f { s }}  =  { s } +  f { s }  =  { s , f { s }}  =  { s , s } = { s }. 
So our widening is superficial. We can even envision it as an infinite loop because 
applying f  would give again and again the same. By this heuristic application of any 
function as a potential widener we ourselves define the natural run or growth of   f. 
For any given   s   set and   f   function, a   C   set is   s , f , union  complete if: 
 
1.  { s }  C 
 
2.  If  S  C  and   f  is defined on  S   then    S + f (S)   C  too. 
 
3.  For any   B  C  and   B  non empty,   B   C  too. 
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By  3.  for the whole  C  complete set too:  C   C. This widest element of  C  is clearly 
then either such that  f  is not defined on it or  f ( C )    C . Indeed, otherwise, that is 
if  f ( C )  were outside   C   then  C +  f ( C )  were wider than  C  yet by  2.  it 
would be in   C.  So  actually   C   had to be wider that itself. 
If we know about   f   that whenever it is defined its value is outside, then the obvious 
consequence is that on    C   f  has to be undefined. If we also know that  f  is only 
undefined on this widest   C  stage then a more surprising consequence is that any 
element of any   S   stage in  C   has to be   s   or an  f  value.  
Indeed, suppose an arbitrary   e   element. If it is in all   S   then of course it in  { s }  too 
and so  e  =  s. If   e    s   then  { s }  does not contain  e   and so the   B   set of all those 
stages that avoid   e   is not empty and so   B   C. This   B  can not be   C  because 
then   e   were not contained in any stage. So,   f   must be defined on    B  and also take a 
new outside value. So   B + f ( B )  is a wider set than   B. Thus it can not avoid   e  
but   B  does  and so  e  =  f ( B ) .  
Our heuristic   f   defined by a  c  choice function on an  S  set was exactly such and an 
easiest complete  C   is the set of all subsets of   S. And indeed, here every   e   s  element 
of   S  is an   f   value trivially, because  e  = c { e } =  f ( S – e ). 
This example shows that   C  is not merely the collection of our intuitive growth from  s. 
Formally this comes about because our rules tell only what must be inside.  
In general, any junk could be added to a  C  and applying  2.  and  3.  enough times we 
could get a new complete set. 
In truth, our envisioned growth is a set that contains only the sets obtainable by these rules 
and no junk. At first to find this junk-less minimal seems quite easy.  
The solution is the counterpart of union, the so called common part or intersection:   
S T  =  { e ;  e   S  and  e   T }  and using this for the  C  elements of a  D  set: 
D  =  { S ;    C   C   D      S   C }    
Here I used these “weird” letters because this our application.  
D  is the set of all possible   C  complete sets. 
Observe that this definition of the minimal complete set is a totally explicit set collection. 
We could write the three rules and the common part as a single  P  property. 
Also observe that this  D common part automatically satisfies the three rules and 
automatically has to be the smallest such complete set. So indeed we defined the intuitive 
growth of  f   from  s   as a spatial concept. 
This of course is still only a subjective conquest. The original goal was to establish a  h  
for any two  S  and  T  sets. With our more general vision this means to establish a  h  
equivalence for arbitrary   s , f  and   t , g   growths. The mentioned choice function idea to 
create  f  and  g  for two  S  and  T  sets then would yield our original goal. 
The same idea we used to create the growths can be applied again. That is, start with 
equivalence complete sets and then their common part would give the minimal. 
The big difference is that we have no given  h  and so we don’t have  h  completeness. 
This  h  will only come out as the common part.  
The new equivalence growth completeness is actually a dual  s , f  and  t , g  completeness. 
The complete sets are now denoted as  W  sets of  E  equivalences: 
For these  E   sets of   (a , b)  ordered pairs we can use  1E    to denote the set of all of the 

first members while  2E   to denote the second ones. 
 

1.   { ( s , t ) }    W 
 
2.    If  E   W   and both  f   is defined on 1E   and  g  on  2E   then: 

       P + ( f ( 1E ) , g ( 2E ) )   E  too. 
 
3.    For any   B   W  ,   B  W  too. 
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Again by using  3.  for the  W  set itself, here we can see again indirectly that the  W  
widest equivalence stage has to be one where one of   f   or  g  were not giving a new pair 
and so we have equivalence on a widest non continuable stage of the  f  or  g  growths. 
This might give the following amazing simplification of our whole project: 

        We don’t need the concept of growths at all! Growth complete sets are sufficient! 
Unfortunately unlike we had the heuristic choice determined growths and even their trivial 
complete sets, the set of all subsets, here for the equivalences we don’t have any examples 
of complete sets. So we are back to defining the  h   equivalence as common part. But it’s 
still valid from our realization that we don’t need the growths of the separate  f   and  g. 
We can define  h   explicitly from using all subsets of   S  and  T  as trivial complete sets.  
This does solve the elimination of time even simpler than we thought and yet we have a 
major problem. Namely, what if this explicit definition defines an empty set. Since we 
have no example of any equivalence complete set, this is a very real problem. In fact, we 
can also realize that our previous subjective success of defining the individual growths was 
false too. Indeed, just because we have the trivial complete sets as all subsets, it still 
doesn’t mean that a common part exists too. 
So the whole common part idea as trivial junk-less set is useless! 
It does define what we want but we can not prove its existence yet. 
The solution is to relax and yet strengthen the   1. , 2. , 3.  rules at the same time. 
Relax them so that they do not require completeness in  2.  for the widest stages. 
This would allow partially complete stage sets that are not continuing on their total.  
And such obviously do exist because as simplest cases are  {{ s }}  and  {{ t }}  as partial   
f   or  g  growths and  {{(s , t)}} as partial equivalence growth. 
Then the really heuristic idea is to combine all these partial stage sets to get the originally 
aimed minimal complete sets. Of course now the junk can not be avoided any other way 
than strengthening the rules so that they are blocked out at each partial stage set already. 
The good news is two facts: The existence becomes obvious and the combined total of the 
partial stage sets automatically will be a non continuable stage set by indirect logic if that 
total is a stage as it should be by  3. So the original  2.  rule would stand. 
The bad news is that   3.  is not inheriting to combined sets so we actually can not use this. 
So what we regarded as junk avoiding subjective strengthening before, would now actually 
become rules that guarantee the inheritance of  3. because we combine widenings that are 
beginnings of each other. 
Unfortunately, for the widening equivalences the set widening is not enough. The 
equivalence as relation must widen. On the other hand the heuristic choice generated set 
widenings can be avoided if we work with the equivalence. 
 

13.   So we now start from scratch and aim at the equivalence directly to see things clearly: 
An  R  relation is a set of  (a , b)  pairs.  

1R   denotes the set of the first elements while 2R  the set of the seconds.  
A relation is equivalence if every first element has only one pair and vice versa.  
A partial equivalence between  S  and  T  is simply an  E equivalence that  1E   S  and  

2E   T. If one of them is equality then we call it a maximal partial equivalence between 
them. It is still partial because a full equivalence between  S  and  T  would mean both 
being equals.  
The big claim is that for any two  S  and  T  sets we can find an  M  maximal partial 
equivalence between them. So, all sets are comparable by equivalence. 
The formal solution we’ll use is quite simple. We’ll find a  W  set so that: 
 
a).  All   E  elements of  W  are equivalences so that  1E   S  and  2E   T . 
b).  W W   but   W = S  or  W = T    
 
It’s obvious that then this   W  is our  M. 
Even for someone who doesn’t know what     means but we tell: 
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  W  =  { e  ;   E  e   E   W }  so these are all those  e  elements together as set that 
appear in any  E  elements of the  W. So actually, it is a widest equivalence if the  E-s were 
equivalences and then of course these   e   are all   (a , b)  pairs. 
What this smart arse plan doesn’t tell is how such  W  set  could be obtained. 
The letter  W   at least reveals our intuitive goal.  
We regard  W  as a widening set of partial equivalences. We start with chosen  s , t  
elements from  S  and  T and regard  (s , t)  as first element in our aimed  M  maximal 
equivalence.  
Of course (s , t)  on its own or rather the { (s , t) }  set is a partial   E  equivalence too.  
Then from  S – s  we pick a new element, from  T – t  too and  assign these again to each 
other. 
This gives a new  E again.  
As our  E increases infinitely we simply combine the elements.  
The first elements of an  E  stage are  1E   in  S, the second ones an 2E  in  T  and so we 

pick again new elements from  S – 1E   and  T – 2E  and they as pair will be added to  E.  
This plan is first exactified by replacing the step by step choices with predetermined ones: 
 
A  c  subset choice function on  S  is simply a function that has as value an arbitrary 
element for any  S’  S. That is:  c (S’) S’. Similarly  d (T’) T’. 
These subset choice functions can tell already the starting elements as: 
s = c (S)  and  t = d (T). So, the initial equivalence is  { ( c (S) , d (T) ) } 
Then if we have an  E   partial equivalence as stage, it must be widened with: 
( c ( S – 1E ) , d ( T– 2E ) ) . 
The other vision was that widening stages must be combined.  
So if  B  is such set containing stages only up to a point then   B  is a stage too. 
The letter   B  refers to beginning because it is indeed a beginning of  W. 
These partial   E  equivalences or stages melt into the final  M  maximal. 
This simply means that to say that the stage subsets were widened by  c , d  and union, is 
impossible to tell in  M  because we don’t know what subsets were these and it wouldn’t 
be true for all subsets of  M. The heuristic idea is to do what we did from the start, regard 
the  W  set of the stages. Here these are not subsets but elements. Exactly those subsets of  
M  that were stages. So we can talk about them. Now we stepped closer to the formal plan 
too, that is achieving a  W   with  a)  and  b). 
In fact, our first two intuitive ideas, the start from  ( c (S) , d (T) )  and widenings by new   
c  and  d  values can be expressed at once: 
 
1.   { (c (S) , d (T)) }   W 
 
2.   If   E   W  and  1E   S  and  2E   T   then  E + ( c ( S – 1E ) , d ( T– 2E ) )   W too. 
 
But the third thing we claimed, the combined widenings for  B-s is still not expressible! 
What are these “already achieved” ones or beginnings of  W?  
They are obviously subsets of  W  but how do we tell them apart from any  W’ subset. 
The crucial lucky break coming out of the widening vision is that we don’t have to specify 
them. 
Imagine a  B  up to a point. An arbitrary  W’  can be two kind in respect of  B. 
Either  W’ contains stage that is wider than all stages in our  B  or not. 
In this second case we have again a crucial duality, namely whether  B  will contain wider 
stage than all the stages in  W’. If again not, then actually  W’  goes all the way in our  B.   
W’ may simply leave out some members in  B. So  W’  is a “cofinal” of   B. 
Amazingly, then the combined set of  W’  will still be the same as of  B. W’ =  B. 
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Indeed, any  e  element that appears in any element of   B  will eventually be collected by a 
wider set in  W’. So requiring that the total of these  W’ is in  W means not more than 
actually the envisioned full beginning sets combined. The other two cases when  W’  went 
too far or not far enough, can also be justified by seeing that there are beginnings that go 
exactly as far as  W’  does. So: 
 
3.   If   W’  W  and  W’ is non empty then  W’  W. 
 
Now we see at once that  3.  applied to  W’ = W  gives that  W   W. 
More amazingly, this at once shows that   (W )1 = S  or  (W ) 2 = T . 

Indeed, otherwise  W + ( c ( S – (W)1 ) , d ( T– (W) 2 ) ) were wider than W. 
But  W  is the widest in  W  by definition so actually  W  were wider than itself. 
So we instantly achieved  b).  and we might think that the simpler  a).  should be easy. 
Unfortunately it can not follow from our rules simply because these rules only tell required 
elements in  W  but can allow any junk. Our vision actually targeted only those  E  sets 
that are achievable by these rules alone containing nothing more. 
We could come up with a grand idea to get rid of the junk: 
The counter part of combining is the intersection or common part of sets. Just as union, 
this too can be applied for a whole set of sets:   Z  =  { E ;  W ( W Z    E W ) }. 
I used these letters because this is our immediate meaning. Z  is the set of all possible junk 
containing   W  sets that obey our rules and   Z   will be those stages that are in all  W  
and thus indeed the minimal and avoid the junk.  
Unfortunately, there is a second problem with the  W-s  themselves. We simply can not 
guarantee that such sets exist. This sounds unbelievable because the first rule is so 
concrete.  
The problem is that  2. on the other hand requires too much. It only allows a non 
continuation if  S  or  T  is reached. But our instinct was good, the starting stage should 
provide an existence and it does if we relax rule  2.  and do not require widening by  c  and  
d   for the widest stages. 
Then of course we don’t collect all stages up to  M   only some beginnings of  W.  
So our new rules actually try to define the  B  sets that we were so happy to avoid before. 
1.  and   3.  must merely be repeated with using  B  instead of  W. 
But relaxing  2.  is not enough because now we have to avoid the junk by rules. 
A strengthening of the relaxed  2.  would be that for the non widest stage we at once 
assume the 

1E   S  and  2E   T   conditions necessary to widen: 
 
2’.  If   E B  but  E  B   then  1E   S  , 2E   T  ,  E + ( c ( S – 1E ) , d ( T– 2E ) )   B 
        
But this is not enough. We need something strong and what it should be can be found out 
by returning from the vision to the facts. We’ll have to prove  a). 
We could argue indirectly as follows: Suppose there were some  E  in  B  that were not 
partial equivalences. Then lets regard the first, the narrowest of these and it would have to 
be achieved by  2’. or 3. But these keep the partial equivalence if the earliers were that. 
“This is the first time that this first time happened.”  
It sounds even funny but what I meant is that up until now we never mentioned that such 
first or narrowest stages have to be. We didn’t need this. And yet this seems plausible 
because if after every beginnings there is a next then it is the first among the rest. Of 
course, again just as our heuristic union combining went general, here too we could claim 
this for any  B’  subset. 
But observe the crucial difference too! For unions   B’  B  is required while here now 
we  will claim     B’  B’  so the minimal is inside the  B’ subset: 
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4.   For any  B’  B  and   B’  non empty,   B’   B’. 
 
But we still didn’t reveal the new grand idea that replaces the failing previous, the 
intersection. 
Now we’ll get  W  as the combined set of the set of all beginnings: 
W =    { B ;  1. and  2’. and  3. and  4. }. 
So we exorcized time again with a bit longer explicit collection formula but now with an 
easier provability of its features. 
Firstly, the existence is trivial because  {{ (c (S) , d (T)) }}  is a  B  beginning set. 
It satisfies  1. , 2’. , 3. , 4. 
The second good news about using combinings to get  W  is that if we can show that all  B  
sets contain only partial equivalences between  S  and  T  then  W  will automatically 
inherit this and thus obey  a). 
The third good news is that half of  b). is evident for  W.  
Indeed if  W  were neither  S  nor  T  then we could form a new widening exceeding 
W. 
This now wouldn’t contradict rule  2. because it doesn’t require widening for the union, 
but it would contradict that  W  is the widest beginning. 
The other half that is  W W  is true because more generally: 
For any set of beginnings their combined set inherits rule  3. 
4. implies that for any  E  and   F   equivalence stages in  B  the  E F  common part must 
be one of them. Indeed we regard  B’ = { E , F }. 
This of course means that for any two stages one is a subset of the other. 
This at once implies that all equivalences contain the initial  (c (S) , d (T))  pair. 
Indeed, the  { (c (S) , d (T)) }  stage can not have as subset any other  E  and so  E  must 
have this as subset. 
 

 


