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Part One: Equations 
1. Fractions 
 
1.) A fraction remains the same if its numerator and denominator are multiplied with the  
 same number. We call this an expansion of the fraction: 

3
2

3
2

6
4  =    with  2. , here we multiplied with  2, that is expanded   

9
6

3
2

3
2  =    with  3. , here we multiplied with  3, that is expanded   

2.) The reverse of expansion is simplification: 

20
6

10
3

20
6  =  , here we simplified    with  2. 

Sometimes we merely cross out the old numerator and denominator and write the new ones 
above and under:                        3 

20
6                                                   

                                                   10 
3.) If we don’t multiply or divide both the numerator and the denominator, only one of them, 

then of course the fraction value changes, namely: 
Multiplying the numerator increases, multiplying the denominator decreases the value. 
Dividing the numerator decreases, dividing the denominator increases the value: 

3
2

3
2

3
4

6
2  becomes double by changing it to    becomes half by changing it to  .   . 

4
5

2
5

5
4

5
2  becomes half by changing it to  .          becomes double by changing it to  . 

This can give many variations of how to increase or decrease a fraction. Even more when 
increase and decrease are done at the same time. Luckily, all these can be combined into the 
following five rules of fraction multiplications and divisions: 

4.)  
a.)     Multiplying fractions can be done by top with top, bottom with bottom: 

27
8

9
4    

3
2 ⋅   =  . 

b.) Dividing fractions can be replaced by multiplying, if the second is turned upside down: 

4
9    

3
2 ⋅

12
18

9
4  :  

3
2   =     =  

c.) Before we perform the top with top, bottom with bottom multiplications, we should  
check for simplifying but including all numerators and denominators: 

27
8

9
4    

3
2 ⋅   =    was correct because the top  2  and  4  can not be simplified with any of the  3  

or  9. But: 
        3 

4
9    

3
2 ⋅

2
3  =    As we see, we didn’t write the  1  above the  2  and under the  3. 

       2 
This is an accepted abbreviation. By the way, if one misses the simplification, the result is 

still good. Indeed, 
12
18

2
3  =  , the left can be simplified with  6. 

1
10    

3
2 ⋅

3
2010    

3
2 ⋅ . d.) Whole numbers are merely fractions with  1  denominators:   =    =  

This of course, should be done at once without writing it out and rather remembering: 

3
2010    

3
2 ⋅ .   =  

e.)      The fraction “of” an amount is merely an other way of saying the multiplication: 

3
2010    

3
2 ⋅ . “Two thirds of ten” means    =  
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5.) Adding or subtracting fractions can not be done as mechanically as multiplications. 

The only obvious situation is when the denominators are the same: 

3
3

3
1    

3
2 +

3
1  2 +

3
1    

3
2 −

3
1  2 −

3
1  =  1       and          =    =    =    =  . 

All other additions or subtractions must be done by this rule, that is we have to achieve 
common denominators. Luckily, this is easy with proper expansions! 
To find the common denominator we should start with the largest denominator. 
If all others divide this, then it can be used: 

12
5    

4
3    

3
2 ++   =  ?   The largest denominator is  12.  

3  and  4  both divide it, so  12  can be used as common denominator: 

12
5    

12
?    

12
? ++

12
5    

4
3    

3
2 ++ .   =  

The  ?  values can be obtained by seeing how much expansion was done. 
From  3  to  12, the expansion was  4  times, so  2  also must be multiplied with this. 
From  4  to  12, the expansion was  3  times, so  3  also must be multiplied with this. So: 

12
5    

12
9    

12
8 ++

12
5    

4
3    

3
2 ++

12
22

6
11  =    =    =  . 

If the largest denominator is not “good”, that is the others don’t divide it, then we have to try 
the double, triple, and so on. Sooner or later, we’ll succeed. 

6
5    

9
8 −   =  ?  9  is the bigger one, but  6  doesn’t divide it. 9  2 ⋅   =  18, already works, 

because  6  divides it. So: 
6
5    

9
8 −

18
?    

18
? −  =  . 

The  ?  values can be obtained again as the expanded numerators. 
9    18  was doubling, so  8  must be doubled too. 
6    18  was tripling, so  5  must be tripled too. So, finally: 

6
5    

9
8 −

18
15    

18
16 −

18
1  =    =  . 

 
6.) Whole numbers can be added and subtracted easily as fractions with  1  denominator: 

6
?    

6
?    

6
? ++

6
12    

6
4    

6
3 ++

6
192    

3
2    

2
1 ++

1
2    

3
2    

2
1 ++  =    =    =    =  . 

If only two members are, and one is a whole, then the situation is always just using the 
denominator and multiplying the whole with that: 

3
?    

3
2 +

3
6    

3
2 +

3
82    

3
2 +

1
2    

3
2 +   =    =  .   =    =  

An old fashioned notation of adding a whole number is the so called, mix number. 
This contains a bigger written whole number and a fraction part: 

3
2    

3
6 +

3
8

3
2 2   =

3
2    2 +   =  . As we see, we can get it at once by remembering:     =  

3
2   2 , here the line means that they must be multiplied and then added to the top. 

If a fraction has bigger numerator than denominator, it can be changed to such mix number 
easily, by checking how many times the denominator fits into the numerator and what 

remains: 
12
37

12
1 3  =   = 36, so  1  remained. , because  12  went into  37, 3  times  and  12  3 ⋅

Mix numbers are only used for giving initial or final values. 
For calculations we always must use fraction form! 
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2. Brackets 
 
1.) The agreed order of calculations is that times and division are carried out before additions: 

5 +   =  5 + 6  =  11. Some calculators obey this rule, but some can’t. So with those, we 
have to start entering the multiplication. 

2  3 ⋅

If we want to specify our own order of calculations, we can use brackets: 
(2 + 3) + [5 (3 + 5)]  =  5 + [ ]  =  5 + 40  =  45. 8  5 ⋅
As we see, the  (2 + 3)  bracket and the  [  ]  bracket was unnecessary. Sometimes we still use 
such brackets just to express the groups. The  (3 + 5)  bracketing was vital though! Without 
it,  + 5  =  20  had been in  [  ]. As we also see, 5 (  )  was used without the multiplication 
dot, because it was obvious what to do. 

3  5 ⋅

2.) Multiplying a bracket sum can be done member by member too: 
5 (3 + 5)  =   +   =  15 + 25  =  40. Which indeed, is the same as   = 40.  3  5 ⋅ 5  5 ⋅ 8  5 ⋅
If there are letters, the same happens: 5 (x + 5)  =   +   =  5x + 25.  x 5 ⋅ 5  5 ⋅
The signs must be multiplied first: 
                       – +     – – 
                        ↓          ↓
– 5 (x – 5)  =   –  5x   +   25. As we see, the  x  after the opening bracket was regarded as  +. 
Indeed, in the beginning of lines or after opening brackets or equation signs, we omit  +. 
If there are more letters, we should multiply them in alphabetical order! 
Multiplying a number by itself can be abbreviated as squares and cubes, and so on, with other 
exponent: x x  =    ,  x x x  =    ,  .  .  .   2x 3x
                                             – –             – +            – – 
                                              ↓                              ↓ ↓
3 – 5ax (– 2x + ax – b)  =  3  +  10a   –  5   +  5abx. 2x 2x2a

3.)    When two bracket sums are multiplied, we have to multiply every member of one bracket  
with every member of the other: 
(3x – 5 + ab) (– 2ax + 1)  =  –  6a   +  3x + 10ax  –  5  –  2 bx  +  ab 2a2x
 
 
The two lines showed how we multiplied  3x  with both members of the second bracket. 
Similarly, we went through with  –  5  and then with  ab. 
After a lot of multiplications we have to combine the numbers and sum letter products to 
shorten the result: 
3 + (3ax – a – 1) (x – 3  + 1)  =  3 + 3a  – 9a  + 3ax – ax + 3a  – a – x + 3  – 1  = 2x 2x 3x 2x 2x
 
=  2 + 6a  – 9a  + 2ax – a – x + 3  2x 3x 2x .
3 – 1  gave  2, and  3a  + 3a   gave  6a , and finally  3ax – ax  gave  2ax. 2x 2x 2x

4.) The reverse of multiplication is called factorization and it is much harder. 
For example, above giving the final result, nobody would be able to figure out the original 
form. A special case is quite simple though, namely when we only take out a single non 
bracketed factor: 
6 a b  +  9 x  –  3 xyb  =  ?. 2 2x 2a 3a
For the numbers, the common divider is  3. 
a  appears in all members, namely twice or rather as square or second power, a  = aa. 2

x  also appears in all, but in the last two members only as itself, that is first power. 
So, 3 x  can be taken out and thus  ? = 3 x (2bx  +  3  –  aby). 2a 2a
As we see, the example was not given in alphabetical orders, but we strived for this. 

5.) Three special bracket products are very important: 
2b)  (a +    =  (a + b) (a + b)  =   + ab + ab +   =   + 2ab +  2a 2b 2a 2b .
2b)  (a −    =  (a – b) (a – b)  =   – ab – ab +   =  a  – 2ab +  2a 2b 2 2b .

 (a + b) (a – b)  =  a  – ab + ab –   =  a  –  2 2b 2 2b .
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6.) A special application of the previous three special rules themselves, is to change an  

d
n

d
n2x  ±   x  expression into one with a single appearance of  x. Here,  is a fraction. 

For example,  + 
3
22x  x  =  ? Obviously,   and  x  can not be combined, so to find an 

expression with a single  x, would be quite surprising and very useful later for equations. The 

idea is that  x  is regarded as  “a”  and the half of  

2x

3
2

3
1, that is  ,  as  “b”  in the 

2b)  (a +    =   + 2ab +   formula. Indeed, then: 2a 2b
2 2

3
1 ⎟
⎠
⎞⎜

⎝
⎛

2

3
1 ⎟
⎠
⎞⎜

⎝
⎛

3
1 x ⎟
⎠
⎞⎜

⎝
⎛ +    =   + 2x

3
12x   =    +  

3
22x .  + x  +  

2

3
1 ⎟
⎠
⎞⎜

⎝
⎛Then just subtracting    from both sides, we indeed obtained   2x  +

3
2  x  as: 

2

3
1 x ⎟
⎠
⎞⎜

⎝
⎛ +

2

3
1 ⎟
⎠
⎞⎜

⎝
⎛  –  , and so with one appearance of the  x  letter. 

If the fraction is negative, we simply use negative in the bracket too, but the fraction square 
is always negative. Sometimes the halving of the fraction must be done by the denominator: 

2

8
3 x ⎟
⎠
⎞⎜

⎝
⎛ −

2

8
3 ⎟
⎠
⎞⎜

⎝
⎛2x  –

4
3

4
3

8
3  x  =  ?  The half of    is  , so:  2x  –

4
3  – .  x  =  

Interestingly, our final results can be verified by using the     =  (a + b) (a – b)  third 
rule form above too. Indeed,  

2a  – 2b

2

3
1 ⎟
⎠
⎞⎜

⎝
⎛

2

3
1 x ⎟
⎠
⎞⎜

⎝
⎛ + ⎟

⎠
⎞⎜

⎝
⎛ ++

3
1  

3
1 x  ⎟

⎠
⎞⎜

⎝
⎛ −+

3
1  

3
1 x ⎟

⎠
⎞⎜

⎝
⎛ +

3
2 x   –    =    =   x  =   2x  +

3
2 x  or   

2

8
3 x ⎟
⎠
⎞⎜

⎝
⎛ −

2

8
3 ⎟
⎠
⎞⎜

⎝
⎛  x

4
3  x 2 −⎟

⎠
⎞⎜

⎝
⎛ +−

8
3  

8
3 x  ⎟

⎠
⎞⎜

⎝
⎛ −−

8
3  

8
3 x ⎟

⎠
⎞⎜

⎝
⎛ −

8
6 x ⎟

⎠
⎞⎜

⎝
⎛ −

4
3 x   =  x   =  x  =   –     =  . 
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3. One Variable First Order Equation 
 
One variable means that only one letter appears and we will use  x. 
First order means that  x  will only be multiplied with numbers, but not with itself and thus,  

 or higher powers can not appear. 

2x ,
3x

The basic rule is to keep an equation in balance! 
If we just change a side to an other form, that doesn’t affect the balance. A special case of such 
change is when we combine different members on the sides. 
If we add, subtract, multiply or do anything to one side, then the other must be altered the same 
way. What balancings we use, is up to us! Our goal is to express  x  with numbers! 
The first step of course, is to change all mix numbers to fractions. 
The second, is to get rid of all the numbers from the left, and all the  x-s  from the right. 
This can be achieved by subtracting them or adding, if they were negatives: 

               /  change 
2
1 2

2
1

3
1 1

3
2   –   x   –   1             =            x   –   

                 /  – 
2
5

2
5

2
1

3
4

3
2

3
2      –   x   –   1             =               + 1   – x   –   x 

 
These three changes must be done to both sides! 

2
5

2
1

3
2  disappears,  – On the left, x  remains, – 1  disappears and  – x  will appear. 

2
1

3
2x  and  – x  separately, we’ll take out the common   x  and write it as, Instead of writing the  – 

⎟
⎠
⎞⎜

⎝
⎛ −−

3
2    

2
1  x. 

2
5

3
4

3
2   and  + 1  will appear. So:   remains and  – x  disappears, – On the right side, the  

2
5⎟

⎠
⎞⎜

⎝
⎛ −−

3
2    

2
1 

3
4    +   1  x                       =           –      –   

 
We should combine the numbers, but for this, first we have to use common denominators: 

   +   1         /  c.d. 
2
5⎟

⎠
⎞⎜

⎝
⎛ −−

3
2    

2
1 

3
4 x                       =           –      –   

 

      /  combine ⎟
⎠
⎞⎜

⎝
⎛ −−

6
4    

6
3 

6
8

6
15

6
6 x                       =           –      –      +   

 

 x
6
7 −

6
17                                   =                 –                           

 

6
7 −We are almost finished to get  x, except    multiplies it. 

6
7 −  To get rid of it, we’ll have to divide both sides with  

                        /  :  x
6
7 −

6
7 −

6
17                                   =                 –    

 

7
6    

6
17 ⋅

7
6    

6
17 ⋅

6
7 −

7
17

7
3  2  

6
17           x     =      –    :   =  +   =    =    =  

 
Now lets use the five steps again through an other example: 
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x   –   1                 /  change 
4
3 1

3
2

2
1 2   –   x   –                =            

 

x   –   1                    /  – 
4
7

2
5

4
7

2
5

3
2

3
2               =               – x    –   x   –      + 

 

              /  c.d. ⎟
⎠
⎞⎜

⎝
⎛ −−

2
5    1  

4
7

3
2 x                   =       –   1   –    + 

 

       /  combine ⎟
⎠
⎞⎜

⎝
⎛ −−

2
5    

2
2  

12
8

12
12

12
21 x                  =       –      –    + 

 

                     /  : 
2
7  −

2
7  −

12
1 x                           =                          

 

2
7  −

12
1

7
2    

12
1 ⋅

7
2    

12
1 ⋅

42
1   :              x     =        =   –    =   –    =   –  

                                                                                  6 
 
We can verify our result by writing it into the changed original equation: 
 

4
7

42
1     

2
5 −⋅

3
2

42
1                =               –   1    –   –     –   

 

   –   1           /  c.d. 
4
7

84
5

3
2

42
1                     =            –     +     –   

 

        /  combine 
84
56

84
5

84
84

84
147

84
2   +     –      –                  =           –  

 

84
89

84
89                         =           –                         –   

 
Thus, our solution was correct. 
 
Of course, we could aim for expressing  x  in the opposite way, that is having it on the right side 
and all the numbers on the left. Sometimes the original equation has  x  only on the right side, and 
then we save a few steps by proceeding this way.  
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4. The “Hyper Drill” 
 
This is not a mining equipment, rather a type of exercise that has infinite many variations and 
perfects the usage of the Descartes coordinate system and the solving of equations at the same 
time. In the Descartes system, the points of the plane are located by the  x  and  y  coordinates. 
These can be obtained by simply drawing perpendiculars to the  x , y  number lines: 
 
 
                     y                                   P = (x , y) 
 
 
                                                      x 
 
 
The agreement is that on  x, the plus values are on the right, while on  y, they are upwards. 
The real goal of Descartes was to combine geometry with algebra. And indeed, instead of just 
single points, we can regard lines, circle, and so on. These of course, contain infinite many points. 
So, they could only be given as sets of points. But how to give a whole set? 
If we can find an equation containing  x  and  y, so that it is only true for the points of our 
geometrical shape, then the equation itself is actually a set of all those  x , y  values, that satisfy it. 
But even better is the fact, that if two shapes like a line and a circle cross each other, then the 
crossing points are satisfying both equations. So calculating the common solutions is actually 
giving the crossing points. Thus, algebra can solve geometrical problems. And also in reverse, 
algebraic solutions can be looked and checked by the pictures. 
The “hyper drill” calculates the crossing of two lines! 
The equations of lines can be best given as  y = s x  +  h. 
Here, s  is the slope and  h  is the crossing of the  y  line. 
The slope means what we use in street signs too. Instead of angles, it gives the dangerously steep 
road’s slope as a percentage, like  13%. This means that the elevation, that is the increasing of  y, 
is  13%  of the travel forward. This is still, a little bit ambiguous, because the “forward” could 
mean the actual upwards travel on the road or the really straight forward distance in an imaginary 
line inside the road: 
 
 
                            real forward                                y change 
 
 
                                imaginary forward  =  x  change 
 
As we see, the imaginary change is easier for us, because it is exactly the  x  change. 

changex 
changey slope    changex ⋅     or     y change  =  . For example: So, slope  =  

3
200

3
2

3
2  100 ⋅   =  66.6   =  If the slope is  , and we go forward  100  in  x, then  y  will change: 

 

                                                                                  66.6  =  
3
2  100 ⋅  

                                                             
                                                       100 
The real beauty of this concept is that it can be easily generalized for negative values. 
Negative slope means dropping, that is decreasing  y, when  x  goes forward to the right. 
But even if we use negative  x change, that is going backwards, the rule remains the same: 
y change  =  . slope    changex ⋅
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If for example, the  x  change is negative, and the slope was also negative, then this will give a 
positive  y  change, which indeed it should be: 
 
 
                                y change 
                                                 negative slope 
 
                                                      x change 
 
So we don’t have to worry about the signs, they will always come out correct by the 
multiplications. 
Since  x  is measured from the center  y  line, it’s logical to start with  h  height at here. 
So the  h  initial height of a line is actually the  y-crossing  of it: 
 
 
 
                            h 
               
                        
 
 
 
 
Then the  y  value, that is the height, at an  x  distance can be calculated from this initial height and 
the  y  change, which is the  : slope    changex ⋅
 
 
             y = s x + h 
                                                                                s x 
                            h 
                                                    x 
                                                                               h 
  
                                                                            x 
 
Again, if  h  is negative, everything still works out! 
Now we only have to give two lines, and then find their common  x , y  values. 
But we won’t give the two lines as equations directly, rather give them geometrically.  
The simplest way is by two points, for each line. From these points, we’ll write the equations 
ourselves. All we have to do is find out the  s  slopes and the  h  y-crossings. 
The first is easy because the differences of the  y  and  x  coordinates of the points give at once the 

slope: For example, if two points are  (2 , 3)  and  (6 , 6), then the slope is  
2  6
3  6

−
−

4
3 :   =  

 
 
 
                                                                                                           3 
 
                                                                                                 4 
 
 
 
By the way, the coordinate differences are much easier to see if we draw a triangle as above. 
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 For the  y  crossing we have to choose one of the points, namely the closer one to the  y  line! 
Then move towards the  y  line, and simply add to the  y  coordinate of the chosen point the 

 value, with the already obtained slope:  slope  move ⋅
 
 
 
         
 
          
                          – 2  
             3 
 
              h                       3 
                                        
 
 
 
 

4
3  2 ⋅

2
3

2
3

2
3

2
6  =    =  .   =  3  –    –  h  =  3  –  

3  was the  y  coordinate, that is the height of the closer point to the  y-line. 
From this point, a  – 2  move took us onto the  y-line exactly to  3. 
This move is always the opposite of the  x  coordinate of the closer point. 
Indeed, if it were on the other side of the  y-line, it were negative, but the move is positive.  
The change from the height  3  of the closer point can be obtained as the  .  slope  changex ⋅

4
3  2 ⋅In our case it was:  –  . 

4
3

2
3x  +  . Now the equation is easy: y  =  

 
If we repeat the same for an other line, then we get two:   
y  =  .  .  .     and     y =  .  .  .     equations.  
Then of course, the two right sides must be equal for common  (x , y)  points, so we get a single 
equation for  x. That can be solved and then get  y  too, from any of the above equations. 
By the way, it is better to put the more complicated right side equations on the left. 
The following pages each contain a full example: 
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Lets start with he “left” line! On the triangle the  y  side is  1, the  x  side is  2. 
The line itself goes up, so the slope will be positive. 

2
1  slope     =  

Both points are  1  distanced from the  y-line  so we could choose either of them, but we choose the 
left, because it’s easier since then the move is positive. This point’s height is  1, so: 

2
3

2
1

2
1  1⋅

2
2

2
1 1  =  y-cross  =  1 +   =   +  =       

2
3

2
1  x  +  equation: y  =  

 
The other line goes downward, so its slope is negative: 

1
2 −   =  – 2 slope     =  

y-cross  =  1 –   =  1 +   =  7 2   3 −⋅ 2 3 ⋅
 
equation:  y  =  – 2 x  +  7 
 
Making an equation from the right sides: 

              =             – 2 x  +  7             /  – 
2
3

2
3

2
1  x  +   +  2 x 

 

                 /    c.d. 
2
3⎟

⎠
⎞⎜

⎝
⎛ + 2  

2
1  x              =             7  –  

 

                /    combine 
2
3⎟

⎠
⎞⎜

⎝
⎛ +

2
4  

2
1

2
14 x              =            –  

 

                     /    : 
2
5

2
5

2
11 x                 =                      

 

2
5

2
11

5
2    

2
11 ⋅

5
11

5
1 2    :              x   =     =    =    =  

 

5
35

5
13

5
3  2  

5
22

5
11  2 ⋅            y  =  –    +  7  =  –   =    =   + 
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ope     = 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
2
3  sl

2
3  0 ⋅y-cross  =  1 –    =  1     The point is on the  y  line already. 

equation: y  =  
2
3  x  + 1 

 

slope     =  
1
1 −   =  – 1 

 –   2 

quation:  y  =  – x  +  2 

y-cross  =  0  1   2 −⋅   =
 
e
 
 

2
3  x  + 1                =             – x  +  2                

 

/  – 1  +  x 

⎟
⎠
⎞⎜⎛

⎝
+1  

2
3  x              =                2  –  1                 

 

/    c.d. 

⎟
⎠
⎞⎜⎛

⎝
+

2
2  

2
3  x             =                2  –  1                 bine 

 

    

/    com

   
2
5  x                =                  1                     :/     

2
5  

 

2
5

5
2  

5
2    1 ⋅          x   =   1  :      =    =  

 

5
10

5
8

5
3  1              y  =  – 

5
2

5
2   =    =     +  2  =  –  + 
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ope     = 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
5
1  sl

5
15

5
13

5
3 2y-cross  =  3 –   

5
1  2 ⋅

5
2  =    –    =   =      

equation: y  =  
5
1  +  x 

5
13  

 

slope     =  
2
3  

y-cross  =  – 
2
3  1 

2
3

2
7

2
4

2
1 3   2   =  –  ⋅−   =   –   –   =  –  

 

2
3equation:  y  =   x  –  

2
7  

 
 

             /  –  
5

13
2
3

5
13

2
3

2
7

5
1              =              x  –    +   x  +  x  

 

⎟
⎠
⎞⎜

⎝
⎛ −

2
  

5
1  x             =            –  3

2
7   –  

5
13                  c.d. 

 

/

⎟
⎠
⎞⎜

⎝
⎛ −

10
15  

10
2  x          =           

10
26    

10
35  −−                  combine 

 

/

      – 
10
13  x             =             – 

10
61                           : –  /

10
13  

 

            x   =   – 
10
61   :  –  

10
13   =  + 

13
1061     

10
⋅   =    

13
61   =  

13
9 4  

 

13
613            y  =      

2
⋅   –  

2
7   =  

26
183   –  

2
7   =  

26
183

26
92

13
46

13
7 3    –  

26
91   =    =    =  
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5. Word Problems
 

 

1.) Two numbers are 99 together. What are they if: 

a.) One is  7  bigger than the other. 

b.) One is twice of the other. 

.) One is  15  smaller than the other. 

.) One is one tenth of the other. 

.) Adding  1  to the smaller, it becomes exactly one ninth of the other. 

) Adding  1  to the smaller, and subtracting  1  from the bigger, 

 

    

t  40. 

Solutions
.) igger is  x + 7. 

  Their sum is  99, so: 

 92          /  : 2 

 
igger is  46 + 7 = 53. 

heir sum  46 + 53  is indeed  99. 
 

b.) 

 99          /   3 

 
igger is 

 

 

 

 
c
 
d
 
e
 
f.

the bigger becomes double of the smaller. 

g.) Adding  2  to the smaller and subtracting  2  from the bigger,  
one becomes double of the other. 

 
h.) One of them is odd and is almost half of the other. 

    The difference of the two is almos
 

: 
a Let the smaller number be  x. Then the b

  

x    +   x + 7     =         99           /  combine, – 7  

        2x             =        
         x              =         46 

So this is the smaller number, and the b
They are correct because t

Let the smaller number be  x. Then the bigger is  2x. 
Their sum is  99, so: 

x    +   2x          =         99           /  combine   

        3x             =        :
         x              =         33 

So this is the smaller number, and the b  33  2 ⋅  = 66. 
heir sum  33 + 66  is indeed  99. 

c.) 

  84           /   2 

 
gger is  42 + 15 = 57. 

eir sum  42 + 57  is indeed  99. 
 
 
 

They are correct because t
 
Let the smaller number be  x. Then the bigger is  x + 15. 
Their sum is  99, so: 

x    +   x + 15     =         99           /  combine, – 15  

        2x              =       :
         x               =         42 

So this is the smaller number, and the bi
They are correct because th
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d.) Let the smaller number be  x. Then the bigger is  10x. 

 99          /   11 

 
gger is 

 

Their sum is  99, so: 

x    +   10x        =         99           /  combine  

        11x           =        :
         x              =          9 

So this is the smaller number, and the bi  9  10 ⋅  = 90 
their sum  9 + 90  is indeed  99. 

 
e.) 

     99           /  bine, – 9  

 
er is  9 (9 + 1)  =  =  90. 

  9 + 90  is indeed  99. 
 

f.) 

Subtracting  1  from the bigger makes it  99 – x – 1. 

bine  

    /  

  
r is  99 – 32  =  67. 

  66  is indeed, double of  32 + 1  =  33. 
 

g.) 

Subtracting  2  from the bigger makes it  99 – x – 2. 

bine  + 2x 

  – 2  

 bigger number should be  
e smaller, so this solution is false. 

hus, using the other possibility: 
 
 
 

They are correct because 

Let the smaller number be  x. Then the bigger is  9 (x + 1) 
Their sum is  99, so: 

x    +   9 (x + 1)    =         99           /  change  

  x  +  9x  +  9      =    com

          10x             =        90           /  : 10 
             x              =        9            

So this is the smaller number, and the bigg  10  9 ⋅
They are correct because their sum

Let the smaller number be  x. Then the bigger is  99 – x 
Adding  1  to the smaller makes it  x + 1. 

This is the double of the first, so: 

2 (x + 1)               =    99 – x – 1        change, com/  
  2x  +  2               =       98 – x      – 2   + x  

          3x               =        96              /  : 3 
             x              =        32            

So this is the smaller number, and the bigge
They are correct because  67 – 1  =

Let the smaller number be  x. Then the bigger is  99 – x. 
Adding  2  to the smaller makes it  x + 2. 

We only know that one is double of the other, so either: 
 
2 (x + 2)               =    99 – x – 2         or     

2 (99 – x – 2)       =    x + 2                /  change 

198 – 2x – 4         =    x + 2                /  com

       194                =    x + 2 + 2x        /  combine

       192                =   3x                     /  : 3 
        64                 =     x 
 
This should be the smaller number. Then the
99 – 64 = 35. But it becam
T
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         /  change, combine 

   2x + 4                =    97 – x              /  – 4 + x 

  
s  99 – 31 = 68. 

 2 = 66  is indeed double of  31 + 2 = 33. 

h.) 

bviously, only the smaller can be less than half of the bigger, so: 

 

2 (x + 2)               =    99 – x – 2

      3x                   =       93                 /  : 3  
       x                    =        31     

This is the smaller number. Then the bigger i
They are correct because  68 –
 
Let the smaller number be  x. Then the bigger is  99 – x. 
The “almost half” is not quite exact, but definitely means less than half. 
O
 

x                        <                
2

 x 99 −            2/ ⋅  

2x                      <                99 – x         /    + x 

/3x                      <                  99                 : 3 

x                        <                  33            

he difference of the two numbers can obviously be obtained by subtracting the 
 is from  99 – x. So it is: 99 – x – x.  

his being “almost”  40, can again be used as smaller than  40, so: 
 

: – 2  =  + 29    

 to be turned around! Indeed, any sign 
s ample: 1 < 2  but,  – 1 > – 2   

he   symbol means larger or equal and among whole numbers  x > 29.5  clearly 

that  x = 30 or 31 or 32. 

their difference  37, is “almost”  40. 
 
 
 

 

 
T
smaller, that is  x  from  the bigger, that
T

99 – x    – x        <                40                   combine  – 99 
 

/

   – 2x                 <              – 59              /    :  – 2 
 
        x                 >      – 59 .5
        x                 ≥       30 
 
At the division with  – 2  the inequality had
change causes thi ! For ex
T  ≥
means that  x ≥  30. 
This and the previously obtained  x < 33  together mean 
Since  x  was odd, it must be  31. Then the bigger number is  99 – 31 = 68. 
31  is indeed, “almost” half of 68, and 
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.) A family consists of a father, a mother, a son and a daughter. How old are they if: 

a.) The sum of all their ages is  100  years. 

The mother is three times as old as the daughter. 
ge as the daughter is now. 

 
b.) um of the children’s. 

18  years from now, the father will be twice as the son will be, and the mother will 

 
c.) 

 the son. 
The difference of the children’s age is  10  years. 

.  
 

d.) s the mother is today and the 

The father is older than the mother, but less than six times the daughter. 

 
Solutions: 
 

a.) Let the age of the daughter be  x. Then the mother is  3x. 
But since  20  years ago she was  x, today she is also  x + 20. So: 
 

x             =            20              / : 2 

 
other is 

 
2
 

The father is three times as old as the son. 

20 years ago, the mother was the same a

The sum of the parent’s ages is four times as the s
When the daughter was born, it was ten times. 

be twice as the daughter will be. 

The sum of the parent’s ages is  100  years. 
The father is three times as old as

The mother is as old as the children together

20 years from now, the son will be the same age a
sum of their ages will be  100. 

8  years ago the family consisted of only three members.  

3x             =          x + 20              – x /
2     
  x             =            10 

This is the daughter’s age and so the m  103 ⋅   or  10 + 20  both = 30. 
ghter together are  30 + 10 = 40. 

o the father and the son together are  100 – 40 = 60. 

 

   4x               =          60          / : 4 

 

The mother and the dau
S
Let now the son’s age be  x. Then the father is  3x, so: 

x + 3x            =          60              combine /
    

   x                 =          15 

This is the son’s age and the father is  153 ⋅  = 45.  
5 + 15 = 60. 

 
 
 

This is correct because  4
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b.) Let the sum of the children’s ages be  x. Then the sum of the parent’s is  4x. 
  18  more, so both the sum of the 

children and the parents will be  36  more, that is  x + 36  and  4x + 36. 
be also 

 + 72             /    – 2x – 36  

 

 

18  years from now, everybody’s age will be

Since the parents will be each twice as one of the children, their sum will 
twice as the sum of the children’s: 

/            4x + 36            =             2 (x + 36)               change 

            4x + 36            =               2x

                 2x               =                    36                 /    : 2 
                   x               =                    18  

This is the children’s sum and the parent’s is  18 4 ⋅  = 72. 
en the son is  18 – x. 

ly co  the son. 
the son was  x  years 

ounger, that is 18 – x – x  =  18 – 2x. This was the sum of the “children”. 
 

 /    – 72 + 20x 

 

 30, the father twice, that is  60. 
nd so he is today, 60 – 18 = 42.  

24, the mother twice, that is  48. 

 
c.) 

children’s, thus the daughter’s age is the 
mother’s minus the son’s, that is  100 – 3x – x  =  100 – 4x. 

combine  + 100 

 

Now let the age of the daughter be  x. Th
 
When the daughter was born the “children” on nsisted
Since the daughter is  x  today, this was  x  years ago and so, 
y
The parents were also  x  years less each, so their sum was  72 – 2x.
This was ten times as the sum of the “children”. So: 

/        72 – 2x                    =                  10 (18 – 2x)          change 

        72 – 2x                    =                   180 – 20x        

            18x                      =                         108             /    : 18 
                x                      =                           6 

This is the daughter and so the son is  18 – 6 = 12. 
18  years from now the son will be  12 + 18 =
A
18  years from now the daughter will be  6 + 18 = 
And so she is today, 48 – 18 = 30. 

Let the age of the son be  x. Then the father is  3x  and the mother  100 – 3x. 
Since the mother’s age is the sum of the 

Since the children have  10  years difference in their age, thus either: 
 
100 – 4x   – x           =             10         or 

 x – (100 – 4x)         =             10         /    change 

x – 100 + 4x            =              10        /    

         5x                   =             110       /    : 5 
          x                    =              22 

This is the son and then the daughter is  100 – 224 ⋅  = 12. 
mother  100 – 66 = 34.  

his is a pretty big age difference, but not that impossible.  
dren  = 24. 

 mean that when the son was born, she was 12. 

 
 
 

The father is  22  3 ⋅  = 66  and the 
T
The mother’s age is indeed, the sum of the chil  12 + 22
But this would
That’s more than unusual, so lets try the first possibility. 
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00 – 4    – x          /    combine – 100  

   – 5x                       =          – 90         /    : – 5  

 

 

1 x           =             10

        x                       =             18 

This is the son and then the daughter is  100 –  4 18  ⋅  = 28. 
mother  100 – 54 = 46.  

he mother’s age is indeed, the sum of the children  18 + 28 = 46. 

 
d.)  + 20. 

e  20  more, that is  x + 20 + 20 = x + 40. 
Their total will be  100, so: 

         2x                     =        40          / : 2 

This is the son and so the mother is  20 + 20 = 40  and indeed, in  20  years they 

ember. In other words, she is less than eight. 
      8 

than 

The father is  18  3 ⋅  = 54  and the 
T
We must regard this as the solution. 

Let the age of the son be  x. Then  20  years from now, he will be  x
This is the mother now and she will b

 

100          /    combine  – 20 – 40  x + 20   +   x + 40       =       

      
            x                      =        20 

will be together  40 + 60 = 100. 
Now let the daughter be  x. 
Eight years ago the son was  20 – 8 = 12  years old, so well alive and thus, the 
daughter had to be the missing m
                                   x      <
Since the father is older than the mother, but less than six times the daughter, thus 
the mother is also less than six times the daughter. So: 

                                    40   <    6x   /    : 6 
                                  6.6    <     x     
x   <   8   and   x   >  6.6        together mean that  x = 7. Thus, the daughter is  7. 
The father must be more than  40, but less  76 ⋅  = 42. So he is 41. 
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6. More Variables
 

 

 evious word problems, even when they were asking for more unknowns,  
we could succeed with using only one variable equations successively.  
Sometimes however, even if there is one unknown only, we might have to use more variables.  

 boat travels down the 

eed of the river? 

et the speed of the river be  x  and the speed of the steam boat in still water be  y. 
oat’s speed down is  y + x, while upstream is  y – x. 

hus, under  7  hours down stream, the traveled distance is  7 (y + x).  

 (y – x)    =    126 

ividing the first equation with  7  and the second with  9, we’ll get: 

 + x     =    18 

 – x     =    14 

ubtracting the second equation from the first: 

 + x)  –  (y – x)  =  18 – 14       /   Comb. 

      2x                  =      4            /  : 2 

        x                  =      2 

e could have argued as follows too: 

n stream is  

 

R As we saw, in our pr

For example: 
Two cities are  126  km apart on the bank of a straight river. A steam
river in  7  hours from one city to the other, while it needs  9  hours to travel upstream. 
What is the sp
 
Solution: 
 
L
Then the b
T
While under  9  hours upstream, the traveled distance is  9 (y – x).  
Thus: 
 
7 (y + x)    =    126 
 
9
 
D
 
y
 
y
 
S
 
(y
 
  
 
  
 
W

7
126

9
126  =  18 km/h,  up stream  The speed of the boat dow  = 14 km/h. 

/h, which is twice the river’s speed. 
ated to g  variable. 
ys e ns. 

mber and then 

e second by  2, it becomes, 2x + 2y  =  14, then subtracting the first from this: 
– 3  
 

The difference in speed is  18 – 14  =  4 km
But this argument is a bit over complic  and it was much simpler et rid of the y
Such elimination of variables can alwa asily lead us to the solutio  
There are two ways to this. Either by multiplying one of the equations with a nu
adding or subtracting with the other or, by expressing the variable by the others. 
For example in: 
2x – 5y    =     3 
x + y        =     7 
If we multiply th
2y + 5y     =   14 
    7y         =    11

      y         =  
7

  =  111  
7
4  

Then to get  x, we can put  y’s  value into one of the original equations and solve it for  x. 
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ith the other method of “expressing”, the solution could be as follows: 
rom  both sides gives:  y = 7 – x  
riting this into the first:   2 x – 5 (7 – x)   =   3 

 
W
F  the second equation, subtracting  x  from
W
                                            2 x – 35 + 5 x   =   3 
                                                  7 x              =  38 

                                                          x         =  
7
38

7
3   = 5 

Then, y  =  7 – x  =  7 – 5 
7
3  = 1 

7
As we see, “expressing” is a bit more com

4 . 

plicated at the beginning, but it gives the other 
ck s o in average, both elimination methods require the same 

.) x + y  =  a  

x + z  =  c 

c  are any given numbers but we can find an easy solution for all such possible 
 follows: Lets add together all three

unknowns successively ba ward . S
amount of calculations.  
 
Sometimes however, we can succeed with some unexpected tricks much easier: 
 
1

y + z  =  b 

 
Here  a, b, 
numbers as  equations: 
 
2x + 2y + 2z  =  a + b + c   /  : 2 
 

   x + y + z     =  
2

 c  b  a ++

equation from this we get at once each unknown. 
 
Subtracting each 
 

z  =   
2

 – a   =  c  b  a ++
2

 –   c  b  a ++
2

  =   a 2
2

 a  c  b −+  

x  =  
2

c  b  a ++
2

 c  b  a ++
2

 b 2
2

 b  c  a −+    =   – b   =   –  

2
c  b  a ++

2
 c  b  a ++

2
 c 2

2
 c  b  a −+    =   – c   =   –  y  =  

 
2.)   a 

  b 
x z  =  c 

hould multiply all three equations together to get: 
  =  a b c   / 

x y  =
y z  =

 
Here we s

 2x  2y  z 2

 
c b a   Dividing this with each equation, we g    x y z       =  et each unknown: 

 

z  =  
a

  =c b a   2a
c b a   =  

a
 c b

b
c b a

2b
c b a

b
c a    =  x  =    =  

c
c b a

2c
c b a

c
b a    =  y  =    =  
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.) x (y + z)  =  a    xy + xz  =  a 
 (x + z)  =  b    yx + yz  =  b 

z (x + y)  =  c    zx + zy  =  c 

w unknowns we can use  1.)  to find them as: 

z  =  B 

 
4.) y  =  a 

x + z + xz  =  c 

ch equation. 

 + y + xy + 1  =  (x + 1) (y + 1)  =  a + 1 

 + z + yz + 1  =  (y + 1) (z + 1)  =  b + 1 

 + z + xz + 1  =  (x + 1) (z + 1)  =  c + 1 

ultiplying them all:    =  (a + 1) (b + 1) (c + 1) 

 
3

y

 
Regarding  xy, xz  and  yz  as ne
xy  =  A 
y
xz  =  C     Then we can use  2.)  to find  x, y, z. 

x + y + x
y + z + yz  =  b 

 
Lets add  1  to ea
 
x
 
y
 
x
 

21) (x +  21) (y +  21)  (z +M
 

1)  (c 1)  (b 1)  (a +++Thus, (x + 1) (y + 1) (z + 1)  =    dividing this with each: 
 

1  a
1)  (c 1)  (b 1)  (a

+
+++

1  a
1)  (c 1)  (b

+
++    =  z + 1   =   

 

1  b
1)  (c 1)  (b 1)  (a

+
+++

1  b
1)  (c 1)  (a

+
++y + 1   =     =   

 

1  c
1)  (c 1)  (b 1)  (a

+
+++

1  c
1)  (b 1)  (a

+
++  =   x + 1   =   
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7. Linear Equation System and Determinants
 

 

 e variables are only multiplied with  
numbers, but not with each other or themselves. 

ea qu umbers. 
d form of the above system is: 

 

h other, and the numbers without variables are 
n the right side. Even if a variable doesn’t appear in an equation, we can use  0  
eral form. For example: 

x    +    y    +    2z    =      0 

ables can be given as the table: 

Such table is called a matrix.  
This uniform writing of the linear equation system suggests the question, whether there is an 
instant way to calculate all unknowns without the complicated eliminating methods of the 

 , z  are our alphabetical variables for the unknowns, while  a, b,  .  .  . , e  for the 

mple, ,  .  .  . 

ations, we’ll always 

D 

 

R Linear means the same as first order, that is that th

So if    or  xy  appear in an equation, then it is not linear or first order. 
2x    =    3 + 5y 

2x , 2y

y – x  =  7    
is a lin r e ation system, because both  x  and  y  are only multiplied with n
A more organize
2x – 5y   =   3
– x + y    =   7 
because the same variables all appear under eac
all appearing o
to keep the gen
 
– x   +   3y   +   0z     =    – 2 
2x    –     y   +    5z    =      3 
0
 
So the multipliers of the vari

⎟
⎟

⎜
⎜ − 512  

⎟
⎞⎛− 031

⎜

⎠⎝ 210

variables. 
There is such method, what’s more for any number of unknowns.  To introduce this we have to 
use  a, b, c,  .  .  .  variables for the normally given data numbers too.  
So,  x, y,  .  .  .
given numbers. In our English alphabet, z  comes after  y, but here, we assume that  z  is the 
last unknown. We can imagine other letters between  y  and  z, for exa  1y , 2

Also, e  is the last alphabetical variable for our data. Think of  e = “end”.  
Between  b  and  e, there can be as many variables as we want, but usually we’ll use  c  for any 
of these. This will make sense for a  c = “column”  meaning too. 

y

On the other hand, for the numbers that stand on the right side of the equ
use the  r  letters which will make sense, not only as  r = “right”, but as  r = “replacement”. 

1.) An  n-square matrix  is an  n  by  n  table of numbers. 
We’ll usually place them in round brackets and denote them column by column with 
alphabetical letters  a, b,  .  .  . , c ,  .  .  . , e  and  row by row with subscripts.  

                                  

 
2.) An  n-order

 

⎟
⎟
⎟
⎟

⎠
⎜
⎜
⎜
⎜

⎝ nnn

222

e..ba
.....
.....  
⎟
⎟
⎞

⎜
⎜
⎛ 111

e..ba
e..ba

  is an ordering of the  1, 2, 3,  .  .  .  , n  numbers. 
For example, a  4-order  is  3, 1, 2, 4. 
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.) The  pick

 
 
3   by an  n-order  i, j,  .  .  .  from a matrix, is    .  .  .  

or example, the pick by the  4-order  3, 1, 2, 4  is  
ia , jb ,

3a , 1b , , 4d . F 2c
4.) The  pick product  is the product of the pick. 
5.) An  assignment  is assigning  +  or  –  to each  n-order.  
6.) The  determinant  of an  n-square  matrix with a chosen assi mgn ent is the sum of all  

 matrix to straight. 

T 1.) 
a.) 

pick products, with the assigned signs. 
We denote this sum by changing the round bracket of the

Decomposition 
By the  i-th  row: 

nnn

111

....
e.ba

e.ba

  

...0

...0
 000a 
...0

i

/
/

/

..0.

..0.
 00b0 
..0.

i

/
/

/

0...
0...

 e000 
0...

i

/
/

/

  +  .  .  .  . + 
....

  =   +  

b.) By the  c  column: 

nnn

111

e.ba
....
....

e.ba

  =  

.0..

.0..

.0..
 0c00 1 ///

.0..

.0..
 0c00 
 .0.. 

2 ///

 0c00 
.0..
.0..
 .0.. 

n ///

  +  .  .  .  . +   +  

 
The    places can contain any numbers. The dots are the unchanged members. 
 

.) Multiplying 
B

0/

2
a.) y the  i-th  row: 

....

....
.ex . bx ax 

....

iii   

nnn

111

e.ba
....
....

e.ba

  =  x 

b.)  the  c  column: By

nnn

111

e.ba
....
....

e.ba

 

 .cx . . 
 ... . 
 .cx . . 
 .cx . . 

 

m

2

1

 x   =  

 
3.) Splitting 
a.) By the  i-th  row: 

 

....

....
ee.bbaa +

....

ii ++
 =  

....

....
e.ba
....

 iii  

....

....
e.ba
....

 iii   iiii  + 

b.) By the  c  column: 

 
....
.cc..

 22 +   =

.cc..

.cc..

nn

11

+

+

   

.c..

....

.c..

.c..

 

n

2

1

 

.c..

....

.c..

.c..

 

n

2

1

   +  
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 1.) a.)     The first member gives all the pick products containing  i

The second member, the pick products containing  . And so on.  
b.)    The first member gives all the pick products containing  

nd o on. 
2.) , 3.)      

 

D The alterna

 

P a . 

ib

1c . 
The second member, the pick products containing  2c . A  s
Go similarly as  1.) 

ting assignment is obtained as follows: 
In each  n-order  we’ll give a sign to each member and the total product of these signs will be 
the one assigned to the whole order. 

.  .  . 
ign is  –. 

member. Then we take that out again and re-alternate the 
 always  +, so we don’t 

ther.  

T  opposite. 

.) Exchanging two columns or rows makes the determinant change sign. 
(Unless it was  0, and thus didn’t have a sign at all.) 

minant. 

6.) or their multiplied variants, then 

P 
e too after the exchange, but the 

igger one changes. Thus, all together only one sign changes.  

hbouring 

ng exchanges, so together 
.  

3.) 
4.) 

and one with repeated  

6.)  columns. 

ual columns. But by  4.)  this is  0. 

 value of the determinant with the 

 
 
 

The first member has the sign by:  + 1  ,  – 2  ,  + 3  ,  – 4  ,  + 5  ,  
For example, if the first member is the second, its s
Then we take out this member and again alternate the rest:    + 1  ,  – 3  ,  + 4  ,  – 5  ,  .  .  . 
This will tell the sign of the second 
remaining numbers. And so on. Of course, the last remaining number is
have to bother about that, when we multiply all the signs toge
For example, the alternating assignment for  2 , 4 , 1 , 5 , 3  =  –  +  +  –  =  + 
From now on we use this alternating assignment for all orders and determinants. 
 

1.) Changing two neighbouring members in an  n-order, the sign changes to
2.) Changing any two members is also changes the sign to opposite. 
3

4.) If two columns or rows are the same, then the determinant is  0.  
5.) Adding a column to an other doesn’t change the value of the deter
 (Similarly for rows.) 

If a column is the same as the sum of other columns, 
the value of the determinant is  0. (Similarly for rows.) 
 

1.) The signs given to all other members than the two exchanged remain the same. 
The smaller of the two neighbourings remain the sam
b

2.) Every change of two members can be obtained by successive neighbouring changes, as  
follows: First, we move one member next to the other. Then, use one single neig
exchange. And thirdly, we move the exchanged member back to the position of the other.  
The back and forth movements are the same many neighbouri
are even many. Plus the single exchange makes the total odd. And thus, the sign opposite
By  2.)  all pick products become opposite and thus the total too.  
Suppose that the determinant were not  0, but had a sign.  
Exchanging the identical columns or rows keeps the determinant identical too.  
By 3.), if it had a sign, it couldn’t be identical, but were opposite in sign.  

5.) By  first  T  3.)  we can split the new determinant into the original 
columns. But then this second member is  0  by  4.).  
By 5.), the sum of any number of columns can be replaced into one of the added
(With keeping the same value of the determinant.)  
If one column is a sum of others, then the sum can be replaced into one of the members 
and thus, obtain a same value determinant with two eq
If one column is the sum of not others, but only some multiple variants of them, then first 
we can multiply the columns, which changes the
multipliers. But still this leads to a  0  value, and thus the original had to be  0  too.  



 
  
 

 Lets use an    “replacement” column, that we exchange with each column of an original  

matrix which had a  D  determinant value. The obtained new determinants are denoted as   
  .  .  .  ,   according to which column is replaced. Then: 

P -th   
o it
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⎟
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T

aD  , bD  , eD
 
a  D   +  b   +  .  .  .  +  e  D   =  r  D i  bDi a i e i

We’ll only show it for  i = 1. The general case can be seen similarly or we can replace the  i
r w h  sides.  w  the first in all determinants and thus, change the sign on both
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The diagonally positioned determinants on the left are the same as the right.  
The other members on the left cancel each other if paired by the mirrored position to the 

iagonal ones. Indeed, each pair can be obtained with a column exchange. Thus, are opposite.   

 1  x     +     1  y     +   .  .  .   +    1  z     =     1

 
 x     +     y     +   .  .  .   +    z  

 

 an  n  variable linear equation system where  x , y , .  .  . , z  are the  n  unknowns.  

T  the  D  determinant of the left multipliers of the unknowns is not  0, and   
 ones with the  r  right side data, then: 

  = 

d

D r  a b e

2a    =     2e  2r  2b

   .                    .                                 .                . 
   .                    .                                 .                . 
 

 x     +     n  y     +   .  .  .   +    n  z     =     nr  na b e
 
Is

If

a b eD  , D  ,  .  .  .  , D   denote again the replaced

x  
D D D
D

a   ,  y  =  
D

b   ,  .  .  .  , z  =  
D

e   are solutions and the only ones.  

P 

Let ,
(The two set can have comm

By previous theorem,  ia aD   +  ib bD   +  .  .  .  +  ie eD   =  ir D. 
Dividing both sides with  D, we can see that the claimed ones are indeed solutions. 
Now enough to show that if there are two set of solutions, then  D = 0.  

  x  1y  , .  .  . , 1   and  2x  , 2y  , .  .  . , 2z   be two set of solutions.  
on members, but not all.) 

1  z

The  x  = 1x  – 2x , y  = 1y  – 2y  ,  .  .    . , z  = 1z  – 2z   differences will satisfy: 

ia x   +  ib y   +  .  .  .  + z   =  0 ie
All  x  , y  ,  .  .  .  ,  z  t be  0, because we had sets. ivid can’  two D ing with a non zero, say  y , 

ultiples of 

T 
E ns  b o co n

 

all  ib   can be expressed from the others. Thus, this column will be a sum of m
others. Then by  6.),  D  =  0. 

Calculating Determinants 
1.) xpa ion y r w ( lum  similarly.) 

nnn

111

....

....
e.ba

  =  ia   

e.ba

 
x

xxx x 
...x

  + ib   

...x

...
..x.
..x.

x xx x
..x.

 +  .  .  .  . +  ie  

x...
x...
x xx x
x...

 

 
The  x-s  mean omitting the members and thus, obtaining one smaller sized determinant. 

2.) “Criss Cross” Rule:  

 

 
ba
ba

 
22

11  =  – 

3.) Cramer Rule:  
 

1b  a 2b 2a1

 cba 222   =  22222 bacba   =      1a 2b 3c + 1b 2c 3a + 1c 2a 3b  

33333

1

a

bacba

cba

cba

333

111

 
 
 
 

1111

bacb
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8. From Variants O actions To Prime Fac ionf Fr torizat  
 

 The “strange” feature of fractions is that different ones can still be equal. For example, R
3
2

6
4 .  = 

We called this expansion and simplification, but not all equal fractions are expanded or 

simplified from each other. Indeed, 
6
4  = 

15
10   and the  10  is not multiple of  4. Yet, both sides 

are expansions of  
3

expansions of each other or of a common third one. The a

2 . Thus, the obvious question is whether all equal fractions are merely 

nswer is yes, and we’ll show this in 
the followings by a very simple geometrical way.  

si

of which we spoke above. For example, 

An other hidden problem was left at the simplifications themselves. We assumed that cros ng 
out the common factors from the numerators and denominators leads to the unexpanded forms 

15
10

6
4

3
2

3
2 =   and   = . Here we only simplified with 

 he
 n W

R 
  i ep o

one factor in both cases, but in more complicated fractions or products of fractions, we can do 
many simplifications. So the question is w ther the final simplified form does depend on what 
order we do these simplifications, or ot. e’ll show that the order is immaterial. Amazingly, 
the solution of this second problem follows directly from the solution of the first, that is from 
the expansion of any two equal fractions from a common one.  
In the followings, we start from scratch and won’t rely on any earlier naïve concepts.  
 

From counting, the addition of numbers follows by natural intuitions. Indeed, 4 + 3  can be  
achieved as continuing the counting from 4  w th 3  st s m re. The fact that  4 + 3 = 3 + 4  
does not follow from this procedure, but gradually we learn that addition is also the combining 
of sets. Then, 4  apples plus  3  apples being the same as  3  apples plus  4  apples, is obvious. 
Multiplication is the repeated additions of identical members. 
For example, 4  3 ⋅  =  4 + 4 + 4, on the other hand,  3  4 ⋅  =  3 + 3 + 3 + 3.  
These being the same is not obvious at all and doesn’t follow from this meaning. 
On the other hand, the geometrical meaning of  4  3 ⋅   can be the number of tiles in a rectangle 

 

with sides  3  and  4. Then, this area can be added by rows or columns: 
 

 
 

4  3 ⋅   =                                  =                                    =                                                    =  3  4 ⋅  
 
 
 
 
As we learn the times table, we get a sense of atural evidence” for multiplications. This 
becomes the most controversial at the breaking up of numbers into pro

 “n
ducts of smallest units, 

 called primes. For example, 100  =    =    =  so 50  2 ⋅ 25  2  2 ⋅⋅ 5  5  2  2 ⋅⋅⋅ . Here we proceeded in 
e order to always find the next smallest possible prime. But we can go differently too! 
or exam   =  

th
F   =  ple: 100  =    5 ⋅ 20 10  2  5 ⋅⋅ 5  2  2  5 ⋅⋅⋅ . The above mentioned independence of a 

roduct f mb  mo ers, so it’s not surprising that 
the ed p 

ith the s agin r instead of  100. 
nd yet,  num num ers we choose. In 
e end,  primes will appear at every sequence of choices, only in different 

rder. This so called “unique prime factorization theorem” is without doubt the most important 

 

p rom its two me ers easily generalizes to

To feel this, we should im
ber: No matter wh

re mem

at next possible prim

b
number  100  is the value in both cases. However, it is far from obvious that we end u

w ame primes at all! e a huge numbe
A it is true for any

the same set of
e b

th
o
fact of the natural numbers. Our goal is a crystal clear proof of it: 
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D In the followings, every letter stands for natural numbers: 1 , 2 , 3 ,  .  .  . 
1.) x  divides  y  or  is a divider of  y, if  y = m x, that is if  y  is a multiple of  x.  

We include the  m = 1, that is  y = x  case too. 
1 divides every number because  y = y 1. 

 
2.) x  and  y  are a simple pair if the only number that divides both of them is  1. 

For example: 8  and  15  are a simple pair because: 
The dividers of  8 are: 1 , 2 , 4 , 8  and  the dividers of  15  are: 1 , 3 , 5 , 15. 
(Another name used for being simple pair is being relative primes.) 

 

For any two  x , y  we define the fraction3.) : 
x
y . The  y  is numerator and  x  denominator. 

distance, area or any 
y  many of 

or example  

The value of a fraction can be defined as the partial section of a 
other geometrical size. So, we cut the full size in  x  equal parts and take  

3
2

6
4 = these. Then, different fractions may be equal, f , because taking “two 

thirds” of something is the same as taking “four sixth” of it. 
of lines that 

e horizontal difference of  P , Q  is  x  
A completely different geometrical definition of fractions could be the slope 
connect two  P , Q  grid points in a grid system. Th

units, while the vertical is  y. Then, 
x

  is the ratio of elevation compy ared to the advance. 

Declining lines could even be interpreted as negative fractions, but we ignore this now. 
e 
 

   
     

h li

The equality of different fractions would then mean the parallelity of the lines. Or, if w
only regard lines through a fixed  O  origin, then the equal fractions are only between
pairs of points on one line: 
 
 
 
 
 
 
 
 
 
 
 
 
  
    

e 

        

n  in hi pi  the  

O 

s 

  

e

  

 t

 
 
 

T cture is
3
2  = 

6
4   line.  

etrical definitions, the equality of two  yWithout such geom
x

  and  
X
Y   fractions can be 

ls de ine  as  X   =  x . 

hi  eq al y  two p od cts can also b se n in the gr  system f two 

a o 

s
a

f

u
l

d

it
 I

 

of
o

 y

a

 

r
v

Y

u
x

 
T   e e id  as the equal area o
rect ng es. n ur bo e e ample, 2  6 ⋅  =   3 4⋅  
Also, if these two ria gles a e moved into ch other’s corner, then the continuation of  t

s will cross

n r  ea

the th r side  on the previously used line with   o e
3
2  = 

6
4   slope: 
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4.) 

 
 
 
 
 
 
 
 
 
  
  O 
 
 
 

The equal fraction  are also called as variantss  of each other. 

For an tw  v ia s  y o ar nt  
x
y  = 

X
Y   if  x < X  then also  y < Y,  

so e n pea  a out smw ca s k b aller or bigger variants. 
 

5.) y
X

  Y is a  e pan ionn x s  of  ,  if    Y = m y   and   X = m x. 
x

The expansion is a varian  becau e  t, s
xm
y m y = . 

x

x
y

X
Y   is an expansion If   of  , then we can also say that: 

x
y   is a simplification of  

X
Y . 

 

6.) 
x
y   is a simple fraction if  x  and  y  are a simple pair.  

This is logical with the previous simplification name because: 

A  
x
y   fraction is simple exactly if it can’t be simplified.  

 

7.) 
x

  is a minimal fractiony  if there is no smaller variant of it. 

For example: 
3

  is a minimal fraction because non2 e of  
2
1

1
1 or   are equal to it.  

If  y  or  x  is 1, then we obviously have a minimal fraction. 

The  
1

  are called wholes and the  y
x

 are called recipr1 ocals.  

ction can be simplified: 
All minimal fractions must be simple. Indeed,  otherwise, that is if  X  and  Y  are not a 
simple pair, then they have a  c  common divider and so the fra

X
Y   =

 xc
y c  = 

x
y . 

The reverse, that is that all simple fractions are minimal is far from obvious. 
T mal fraction, there are other 
simple variants too. In short, two simple fractions could be equal. The impossibility of 

a a  
 
 
 
 
 
 

he opposite would simply mean that besides the mini

this is not evident if we regard fractions with huge numer tors nd denominators.
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8.) A number is a prime, if it is not  1, but it can only be divided by  1  and itself. 

2 , 3 , 5 , 7 , 11 , 13 , 17 ,  .  .  .  are primes. 
4 , 6 , 8 , 9 , 10 , 12 , 14 , 15 , 16 ,  .  .  .  are not primes, rather so called composites. 
The exclusion of  1  from the primes was logical because the composites can all be 
“composed” from primes.  
For example:  4 =   ,  6 = 2  2 ⋅   ,  9 =   ,  12 = 3  2 ⋅ 3  3 ⋅ 3  2  2 ⋅⋅   ,   .  .  . 
This prime composition or prime factorization is unique except of the order of the 
appearing primes. If  1  were allowed as a prime, then it could be repeated as many times 
as we wish, thus making the factorizations not unique. 
This uniqueness of prime factorization follows from the above mentioned identity of 

inimal and simple fractions. So, in the end we obtained results about the products of 
natural numbers, that can be easier proved by looking at the divisions, that is fractions. 

roof. If we 
s and products only, then the same proofs 

T  1.) I

m

This is typical in mathematics to widen the scope of a field, to get an easier p
wanted to restrict our attention, to natural
would become much more artificial and concealed. 
 

f  
X
Y   is a bigger variant of  

x
en  y , th

x
y  Y −

X −
 nt of t

 

2.) I

 is a varia hem too. 

f  
x
y   is minimal and is a variant of  

X
Y , then  

X
Y   is a multiple variant of  y

x

f  

. 

 

3.) I
x
y   is simple, then it is minimal. 

f  x  divides a  y z  product, but  x  and  y  are a simp
 
4.) I le pair, then  x  divides  z. 
 
 

 , then hem.  

t, e  them.  

  product of primes, then  p  is one of them. 

primes are the same except maybe in different order. 

P 1.) 

5.) If a  p  prime divides a  1q  2q product  p  divides at least one of t 
 
 
6.) If a  p  prime divides a  1q  2q  .  .  .  q   produc then  p  divides at least on ofn

 
 
7.) If a  p  prime divides a  1q  2q  .  .  .  nq
 
 
.) If  .  .  .    =  .  .  .    are equal prime products, then the  p  and  q   1p  2p  mp 1q  2q  nq8

 

x
y   

X
Y  =    

Y x  =  X y    Y x – y x   =  X y – x y    x (Y – y)  =  y (X – x)    
 x X
y  Y −   =  

x
y  

−

x
y   This fact can be seen fr m e line presentation of fractions by simply sliding tho  th re e  

xX
y  Y

−
−

X
Y   and thus, the  fraction into the    appears at once: 

 
 
 
 

 
 
 



 
 - 31 - 
 
 

 
 

                                                                 
X
Y                                                               

                                                                                                                     
 x X
y  Y

−
−    

                      
x
y  

                                                    
 

2.) 
X
Y ce    must be a bigger variant, sin

x
y   was a minimal. Thus, we can repeatedly subtract   

  from  Y  and  x  from  X  and get new variants. If there were a final remainder of  y  in  

, and  x  in  X, then this last variant would be smaller than  

y

x
yY , contradicting that it was 

minimal. Thus, there is no remainder and so  
X
Y   was indeed multiple variant of 

x
y . 

 
3.) If it were not minimal, then there were an other minimal among its variants, of which it   

ltiple variant by  2.). Thus, m would be a common divider of x and y. were an m ≠ 1 mu
 

x
y

x
y

z
m   =  4.) m x  =  y z      but,    is a simple fraction, and thus by  3.)  minimal. 

Then, by  2.)  
z
m   is multiple variant of it, and so  z  is multiple of  x.  

 
 
 
                  m 
 
                            y 

   
 
                                                                  z 

5.) If  p  doesn’t divide , then  p  and  q  are a simple pair, and thus by  4.),  p  divides  
 
.) If  p  doesn’t divide  .  

  and so on. 

e now. 

Then  
 
 
 
 
 
 
 
 

  
 
                                         x 

 
2q . q1

6 1q , then  by  5.)  it divides  2q  3q  .  .  .  q

2q , then again by  5.)  it divides  3q  .  .  .  
must divide  nq . 

s a  q, but then it must be equal to it too, because  q  is prim

7.), so we can divide with these.   

n

nqIf it doesn’t divide  
  Finally, p

 
7.) By  6.)  p  divide
 
8.) 1p   is one of the  q-s  by  

2p   is also one of the  q-s, so we can divide again, and so on. 
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. Inf ite Decimals, Irrational Numbers 
 

 The decimal system makes the basic operations of whole numbers easily calculable, digit by digit: 
 
Addition:                                     Fast way: 
                             3 5 7                                             3 5 7 
                      +        7 9

T

                                     +        7 9 
                             1 1                                                4 3 6 
                             4 3 6                                               (1 1  remainders only in head) 
 

Subtraction:                                 Fast way: 
           3 5 7 

 

                              3 5 7                                 
                    –         7 9                                       –        7 9 

                             1 1                                                2 7 8 
                             2 7 8                                               (1 1  borrowed only in head) 
 
 
Multiplication:                             Fast way: 
                          3 5 7  •    79                                         3 5 7  •  79 

 9                           2 3 4                                                  2 4 9
                             1 5 9                                                  3 2 1 3 
                            2 4 6                                               2 8 2 0 3  
                                7 5 3 
                            2 2 
                         2 8 2 0 3 
 
 
Division:                                      Fast way: 
              1 9 9 8   :  5  =  3 9 9                          1 9 9 8   :  5  =  3 9 9 
               1 5                                                        4 9 

        4 8                   4 9                                                
                  4 5                                                           3 
                     4 8 
                     4 5 
                        3  remainder 
 
 

  0-s:                          2 4 5 9  :  6  =  4 0 9We have to be careful for  
        0 5 9 
              5 

ewer  0-s  and thus, get an 

 
 

own newer and nWe can continue the division process by bringing d
infinite decimal form of the result:                    
 

 9 . 8 3 3 3 .  .  .  =  4 0 9 . 8 2 4 5 9  :  6  =  4 0 3  
   0 5 9 
         5 0 
          2 0   

               2 0 
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     4 6 9  :  7 5  =  6 . 2 5 3 3  .  .  .  =  6 . 2 5 3  
        1 9 0 

 0 
 0 

 0 

 general: 

           4 0
              2 5
                 2 5
 
In
 

n
m   =  . .  .  . .  .  . .  .  .  .  .  . = . .  .  . .  .  .

                                                                                                       beginning              period 

terestingly, the reverse problem, that is how to find the fraction for a infinite periodical 

.  .  .        =       

 1B 2B  bB  1P 2P   pP  1P 2P   pP  1B 2B   bB     2P   pP  1P

  
 
In
decimal, is also very simple, namely: 
 

. 1B 2B  .  .  . Bb   1P 2P   pP
0. . .0 1

B .  .  . B b1   +   
0 . . .0    9. . .9

P .  .  . P p1  

                                                                                                                                                                               
                                                                           b                    p            b                                                            

ple: . 2305757 .  .  .  =  

  
 

Exam
1000
230   +  

9 0900
57 . 

 
 

6 . 2 5 3 3  .  .  .  = 6  + 
100

 + 25
900

  =  6 + 3
4

+1
300

  =  1
1200

+7200
1200

+300
1200

 = 4
1200

 = 7504
75

 

 

469

his fact that all periodical decimals are actually fractions, prove it at once that there must be 
mber re infinite de
 infin im  with m digits, it should be obviously such, but we can even 

R numbers that are non fractions as irrationals.  
ad obviou that there are irrational numbers and it even 

suggests that there are more irrationals than rationals. But this “obviousness” is a false 
rmalism, that jumps through the original problem of what are numbers at all.  

es then the s  rational numbers are merely the exact whole 
 inte roblem rationality is  crea  distance that is 

ot obtainable from exact division of the unit. This was investigated by the greeks already. 

ms were not 

Today, when we look at an infinite decimal like  0 . 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3  .  .  .  we 

T
nu s that a  no ctions amely the cimals that are non periodical. If we create 
an ite dec al  rando ly picked 

t fra , n

use rules to generate the digits and yet not have a repeating period. For example: 
0 . 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0 2 1 2 2  .  .  .  =  not periodical.  

The fractions are also called rationals, while the 
The infinite decimal system m e it s 

fo
If we start with distanc  fraction  or
divisions of a fixed unit rval. Then the p of ir  to te a
n
The infinite decimal solution of course can be translated back to distances as adding together 
the smaller and smaller distances that correspond to the infinite many digits. Thus, the infinite 
decimal system also shows at once that infinite many distances can add up to a single distance. 
This second problem was also investigated by the greeks, but the two proble
combined. 

don’t actually visualize how it is a distance made up as:  0 . 1  +  0 . 0 2  +  0 . 0 0 3  +  .  .  . 
In order to appreciate the fact that infinite many small distances can add up to a single one, we 

should start with the simplest case of:  
2
1  + 

4
1  + 

8
1  + 

16
1   +  .  .  .  =  1 

Indeed, 
2
1  + 

4
1   =  

4
12+   =  

4
3   =  1 – 

4
1   

             
2
1  + 

4
1  + 

8
1   =  

8
124 ++   =  

8
7   =  1 – 

8
 
 

1   ,  and so on. 
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The general rule that leads to the numerators is  n2  + 1n2 −  +  .  .  .  + 2  +  1  =  1n2 +  –  1. 
This itself can be proved easily step by step showing it for higher values of  n: 

            1  =  2 – 1                          /  2•  , + 1 

      2 + 1  =  4 – 2  + 1  =  4 – 1    /  2•  , + 1 

   – +   8 – 1  4 + 2 + 1 =  8  2    1  =  /  2•  , + 1 
                  . 
                  . 
                . 

n a unit distance the 

  
 

 
2
1

4
1

8
1O  +  +  + 

16
  +  1 .  .  .  =  1  equality can be seen directly too: 

 

                                            
2

   1                               
4
1               

8
1       

16
1  . . . 

 
 
 

The next simplest case would be:    
3

 1  +
9

 + 1
27
1

81
1 +   +  .  .  .  =  ? 

g with distances shows quite convincingly that the sum should be  

 

2
1 : Here a drawin

 

                 
3
1                                    

9
1        

27
1  . 

 
 

                                                                         
2
1  

o prove this formally is quite easy with some tricks used for the sum as an equation: 

    x   =   

 
T
 

 +  .  .  .                /  
3
1  + 

9
1  + 

27
1

3
2 •   =  1 – 

3
1  

3
2  x  =   ⎟

⎠
⎞⎜

⎝
⎛ +++ .  .  .   

27
1  

9
1  

3
1  ⎟

⎠
⎞⎜

⎝
⎛ −

3
1  1   =  

3
1  – 

9
1  + 

9
1  – 

27
1  + 

27
1  – 

81
1   +  .  .  .  =  

3
1     / : 

3
2  

 

x  =  
3
1  

2
3  •   =  

2
1  

 
In fact, the same trick works for the genera  with an  s  starting value and  q  multiplier or l case
quotient as called: 
 

           x   =   s + sq  +  2sq   +  3sq   +  .  .  .   /  q)  (1 −•  

     x (1 – q)   =  (s + sq  +    +    +  .  .  . ) (1 – q)  =  s – sq + sq –  + .  .  .  =  s  /  : (1 – q)   
  

2sq 3sq 2sq
         

q  1
s
−

            x   =   
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R 
  ma

le finite one, can be seen from the famous paradox of Achilles and the turtle. 
100 times faster than a turtle, he shouldn’t be 

p w  the turtle that starts with an  s  advantage.  
deed, they argued that by the time Achilles reaches the point where the turtle started, that is  

 distance, the turtle will be  

 

Achilles Paradox 
How deeply disturbed the greek thinkers were by the fact that infinite ny values can add up  
to a sing
They claimed that even if the runner Achilles is 
able to catch u ith
In

100
s   further ahead. When Achilles reaches this point then the 

rtle will be again  

s 

10000
stu   away. And so on, the turtle is “always” ahead. 

he error is the false application of the “always”. Just because something happens infinite 
any times, it doesn’t mean that it w orever. Indeed, if the rain starts now, then there 
ere nfinite many times just before when it didn’t rain, namely a minute ago, half a minute 

inute ago, and so on.  

T
m ill be f

iw
ago, a third m
 

s + 
100

s  + 
10000

s  +  .  .  .  =  
100  1− 1

s   =  
99

s 100   =   s  •  1 . 1 1 1 1 .  .  .   is exactly the distance 

R 
 

ake us jump to the 
at sma

where Achilles reaches the turtle.  
 

Anti Achilles Paradox 
The solution to the Achilles paradox, that is the acceptance of the fact that infinite many 
smaller and smaller distances added up to a single finite value might m
wrong conclusion th ller and smaller amounts always add up to a finite value.  
This is not so and we can easily create smaller and smaller values that in the end add up to 
infinity. The easiest way is to start with adding up a fix value, say  1, infinite many times, 
which is obviously adding up to infinity:    1 + 1 + 1 + 1 + .  .  .  =  ∞  
Then, we can distribute each member into more and more pieces, and thus getting smaller and 

aller members. For example, with equal distributions: sm

2
1  1 + + 

2
1

3
1   + + 

3
1  + 

3
1  + 

4
1

4
1 +  + 

4
1

4
1  +  .  .  .   =    +  ∞  

Quite surprisingly, but not as surprisingly as without this introduction, it’s also true that: 

 +1  
2
1  + 

3
1  + 

4
1  +  .  .  .   =   

 when the smaller and smaller amounts add up to infinity, is quite hard.  

∞  

The general question of
The square reciprocals for example are not enough to produce infinity: 

1 + 
4
1  + 

9
1  + 

16
1  + 

25
1  +  .  .  .  =  

6
π       ( π  = 3 . 1 4 .  .  . ) 

2

On the other hand, the prime reciprocals will give infinity: 

2
1  + 

3
1  + 

5
1  + 

7
1  + 

11
1  +  .  .  .  =  ∞  

This suggests that there are more primes than squares, and indeed between all consecutive 
square numbers there are more and more primes: 
 
Between  1  and  4, are  2  and  3. 
Between  4  and  9, are 5  and  7. 
Between  9  and  16, are 11  and  13. 
Betw en 6  a d  25, are 17, ,e  1 n 19  23, and so on.  

 
 

 
quares, there is at least Amazingly, it is still not proven that between every two consecutive s

one prime.  
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R 
 

al numbers as actual distances that can not be 
btained from the exact, whole divisions of a unit. The first concrete example they found was 

                                                                                                  d  

Irrational Surds 

As I mentioned the greeks looked for the irration
o
the diagonal of a square with the unit sides: 
 

n
m   ≠    u            

                                u        d                 u                   in other words if  u = 1, d is irrational. 

                                              u 

rom the Pythagoras Theorem   =  +   so with  u = 1 ,    = 2   or   d = 

  
 
 
  
 

2 . 2d 2u 2u 2dF
By the way, this can be 
 

seen easily without the Pythagoras Theorem too from: 

 

 
 
 

 
 
 
 
 
 

 

The irrationality of  2   means quite simply that there is no  
n

  f action, so that  
2m r

n ⎟
⎠

m ⎞⎜
⎝
⎛  = 2.  

Or to put it even more concretely  2m  = 2 2n   is impossible, that is the double of a square 
umber can’t be a square itself. Our earlier result of the unique prime factorization of numbers, 
roves this at once. Indeed, a s ber m st have every prime factor even many times, so 
s a special consequence   has either no or even many  2  factors. Then, 2 n   must have 
dd many  2  factors, unlike the lef  side  

n
p quare num

t

u

2
 2n 2a

2m . This argument shows that not only    is 
rational, but in general any so called “surd” of a whole number is either a whole or irrational:  
he surd 

o
ir

 k xT   is the  y  value for which   x. 
or a whole number  w, 

ky  =
k w 3 8  =  can be whole, for example   2. 

e factors of  w  are in multiples of  k, then  
F

k wIn general, if all prim   will be a whole. 

However, if  
n
mk w   fraction either.    is not whole, then it can’t be an  

k

n
m ⎟
⎠
⎞⎜

⎝
⎛   =  w eans  k m m  = w kn . Indeed, 

Now if  w  has a  p  prime factor not with a multiplicity of  k, then  p  would appear with 
multiplicity of  k  in   km , but with not this multiplicity in the right side  w kn .  
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Part Tw  
1. Euclidian Construction 
 

Euclidian constructions use ruler and compass. But even the usage of these a  re

< < 

R re stricted. 
A ruler can only be placed on two points to draw an infinite line through them. The compass 
can be placed on any two already obtained points and this distance is kept if we remove the 
compass. So, it can be used to draw a circle around any other point with this radius. Points are 
obtained as crossings of lines or circles. The main restriction is that the ruler can not be used as 
a measuring device and it can not be moved in wanted positions. For example, we might feel 
that after drawing two circles, we could find their common tangent by simply placing our ruler 
to touch them both. If we look a bit closer we can understand why this is not allowed. When 
we place our ruler on two points, we might have to move the ruler too, but this motion can be 
made totally exact in the following way: We stick a pin into one of the points and then resting 
the ruler against it, we can turn the ruler until it will exactly go through the other point. With 

rent! We can easily slide the ruler until it touches 
all the other circle. If we pin 

the ruler to touch the other circle, then the touching point will not 
ore. So to obtain a perfect touch on both circles, we would have to 

ake infinite many corrections. 
 and 

D 

           

 

             P                                 
d  P  with  d = QR  radius. 

 )  for the circle through the points  P,Q,R. 
 given points. 

     two circles 

’ll also use this 

two circles, the situation would be very diffe
then it might double cross or not cross at one of the circles, but 

this touching point and turn 
main touching point anymre

m
Euclid not only devised his constructions, but also listed the axioms that rule the points
lines of a plane. These axioms are self evident by our intuitions and when we proceed with 
constructions we use them without even noticing. Of course, to prove more complicated 
theorems, it’s useful to see the chain of assumptions that were used. To find tricky sequence of 
constructions don’t always require such theorems and then the used axioms are unimportant. 
Rather we need an exact way of telling our sequence of constructions. 
I will present such method: 

Elementary construction steps: 
1.) Line across two points:  < PQ >    
                                                                                            P                        Q 

A line across a single  P  point can be picked as  < P >. 
< P >  can also abbreviate an earlier obtained line. 

2.) Circle around a point and passing through an other:   ( PQ )                               •Q 
                                                                                                                              •                           
                                                                                                                              P 
                                                                                                                      
3.) Placing a distance:  d = PQ   
                                                                               P            d           Q 

4.) Circle around a point with a  d  radius: ( Pd )                                               d 
                                                                                                                              •                        

                                                                                                                 
         ( PQR )  is thus the circle aroun

Later we could use  ( P,Q,R
Or  ( P,Q )  for a circle through two

 
5.) Crossings: 

         two lines:                           one line one circle:        
                                                       
  < .  .  . >                            < .  .  . >                 P                    ( .  .  . )                 P 

    Q   < .  .  . >                             ( .  .  . )                  Q                   ( .  .  . )             
 

bitrary  P  point from a line or a circle, weIf we just want to pick an ar
notation as: < .  .  . > }  P     ( .  .  . ) }  P.  
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6.)   a  chord in a circle with  r  radius. 

          ( Ra )                                            
        
 
        

                          
                                 a 

        
                         r                                       P                           R 
 
If  < P >  is  < PQ >, then  < < P >  >  is abbreviated as  < PQ  >.   

T Basic 
 )               R 

                                                                           R 

Angle, copied:   < < P > α  >       α   is given as an
 
 < P >              

 ( Pr )                         ( Pr ) R S < PS > 

                                                                                  S 
             r                                                                

  
       α   

α α

constructions: 
1.) Symmetry line:  < P ⊥ Q >  =          ( PQ
                                                                   (QP )               R’ 
 

< < RR’ > 

  

                                                                                                                       

 . . > ├ R >  =   ( Rd )                S                                   
                         < . . >                 T 

ed as  < PQ

3.) Parallels through  PQ:      >  =       < PQ ├  P >   ,   < PQ ├ Q > 
 
 
4.) Parallel line:  < < . . > || R >  =    < < < . . > ├ R > ├ R > 
 

T  one angle of a triangle is equal to

 

P 

T 
rom the given data (distances or angles), we have to find some  A, B, C  points, so that the  
BC  triangle possess the given data. Apart from the sides and angles, we can also use as data 

ly to the opposite side.  

                                                                           

                                                                            R’ 
 
 
2.) Perpendicular line:  < <
                                              

 
If  < . . >  is  < PQ >, then  < < . . > ├ R >  is abbreviat  ├ R >. 

 
 

  < P || Q

Outer “supplementing” angle of  the other two. That is: 
Three angles of a triangle is o180 . 

              β  
 
        γ                    α      β     γ  
 

Basic triangle constructions: 
F
A
the so called “height lines”, that go from a corner perpendicular
 

                    

( PQ ) (QP ) 

< < S ⊥ T > 
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ata                    Sketch                 Construction 

                              a = BC               ( Bc ) 
                                ( Cb ) 

      < CB –

 
D
 
 
   c               b      

    a , b , c                                    
                                   a          
 
 
                                                          a = BC              < BCβ  > 
a , β  , γ                β           γ                                γ  > 

           < BC  > 
a , c ,                                                                       ( Bc ) 

 >                   A  
              A’ 

                                   a 
 
 
                        c                              a = BC     β

β β
                                   a 
 
 
                                            b            a = BC              < BCβ
a , b , β                β                                                       ( Cb )         
                                   a 
 
                                α  
                                                          a = BC              γ  = 1 0 – 8

                                             we can apply the second case 

                       ha = AH         <A || H >  =  < A > , < H > 

 ) 
  > 

                      ha = AH         <A || H >  =  < A > , < H > 
                    

a

            

 

 
H

 

 

α  – β  
a , α  , β              β
                                   a 
    

  
  

          

  

                    

  

  

                                                             
b , c , h           c        h         b                ( Ac )                       Aba a (
                                                           < H >                      < H

  

 
             

  c       
                  
 ha                         

a , c , ha                                                  ( Ac)                        ( Ba ) 
                                   a                          < H >                      < H > 
 
                          β                                h  = AH       <A || H >  =  < A > , < H > 
                                ha              
a , β  , ha            β                              < < A > β  >                      ( Ba )   
                                a                             < H >                            < H > 
 
                                                         ha = AH           <A || H >  =  < A > , < H >
                         β                            
b , β  , ha                 ha           b            < < A > β  >                     ( Ab ) 

 > 
 

                          β                                    < H >                        <     
 
                                                         ha =
                              α                              

 AH           <A || H >  =  < A > , < H >
   

α α , c, ha          c      ha                            ( Ac )                        < AB
                                                            < H >                            < H

 >   
>   

 
 
 
 

A 

A 

A 

< 

B 

B 

C 

B C 

B C 

B C 



 
                                                              - 40 - 
 
2. Symmetry Lines and Circle  
 

T 

h  the corner.  

                                       
                                           O            
                                           2
                            B                               C 

          
      To construct O from  a  and  

                 

                       

If  A , B , C  are ot on one line, that is they form a triangle, then: n
1.) The symmetry lines of the three sides go through one point. 

 going through  A , B , C. 2.) There is and there is only one circle
3.) Any side looks twice the angle from the center of the circle t an from
                                    A 
                                     α  

C 

  
  
  
  α  
  
4.) One side and the angle across determines already the circle around a triangle. 

                                                                
                         A                          
                          α  

α : 
  
                        
                                  O                                                            
                                  2α                                                          O          
                  B                               C                              α                       α

                             
2

2α180−  = 90 – α                                      a  

P  C >  can not be parallel and thus, they cross in an  O  point.  
 ⊥ B >.     AO  =  CO  because  O  is on  < A ⊥ C >. 
 < B ⊥ C >  too.  

e points are equal distanced from  O  and so the  
ircle would 
. 

 

2      

a , 
  

        
   A’                         
                           

  angles: 
  < C > 

 >                             ( OB )                   A 
< < B >  – 0C0 >                A’ 

 
 

 

1.) < A  B >  and  < A⊥  ⊥
AO  =  BO  because  O  is on  < A

   is on Thus, BO  =  CO  and so  O
2.) AO  =  BO  =  CO, that is all the thre

circle around  O  with this radius goes through all three points. Any other c
ines, so it can only be the samehave to have its center on the same symmetry l

3.)                     A 
                             α 1 2α  
                                
                            1α               2α  
                             
                      B                               C 
                                 2 2α   1α  

T 
 

α  , h                                          h  = A H    <A  || H >  =  < A0 > , < H0 > } B    (Ba) a a 0 0 0 0 
                        α                                                                                                     < H0 > 

                                  h  a
                                                  < BC 90 – α  >                           ( OB )                A 
                           a                     < CB – (90 – α ) >                       < A0 >                     

                                                       
on including the  90 – 
 >  =  < B >  ,

 
 (  ( C h

 Alternate constructi α
 a = BC ,        < B || C

 ( B ha )                 a )                   < < C > 
    

α
  < B >                        < C >                 α  >                       < B
 

 

O < 

< 
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3. Height Lines and Side Squares 
 

T g t. 
the new points obtained next to a corner are equal  

distanced from the height lin  that corner, namely their distance is that height. 

 
 
 

 
 
3.)  we cut the side squares in two by the height lines, then the parts that meet at a corner  

re equal in area. 
 
        
 

 

.) Pythagoras Theorem:   If   =   then   = 

1.) The height lines of a triangle go throu h one poin
2.) If we draw squares on each side, then 

e of
 
                                                   ch  
 
 
                        
 
 

    b 
                                   

                                                                                      
                      

ch  

 
 
                             a                   
                                                   ah  

 
               bh                                  c 
                                                      

ah  

bh  

If
a

                                     = 

 
 
 
 
 
 
 
 
                         
                = 

                                                                   = 
  
 
 
 
 
 
 

 
o90 22 b  a + 2c  4 γ
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P .) Lets draw parallels with each side across the opposite corners. Thus, we obtain a bigger  
triangle in which the old heights become the symmetry lines. 
(Thus follows from  1.)  of the first theorem in the previous section.) 
 

 

.) The angle between  a  and    is the same as between  a  and  x.  
  Similarly, y  =   

         
         

                    

                                                

        

By drawing parallels with the height, we can change the square parts into parallelograms 
The height of both parallelograms is    by  2.). 

ame  s   areas. 
llelogram is calculated as side multiplied by 

 b ing true for a rectangle: 

                           h 
 
                                                   s 

 
 
 
 

 1

 
 

 
 
 
 
 
2 ch

Thus, the two triangles are identical and so, x  =  
                                                                      y 

ch . ch .

 
 

                                    x                            
                                                                  b 

                                               a 
 
 
 
                             a         h    b  c

 
 
  
 
3.)                                                              

                                                             h  c

                                               ch  
 
 
 

           s                                                   
 
 
 
 

 

with a common  s  side on the height. 
Thus, they both have the s

ch

ch
Here we used the fact that the area of a para
the height. This follows from the same e
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 4.) 

        

                     
 
                      
 
                          
 
 

 

R           There are direct proofs for the Pythagoras Theorem that don’t show the two square parts of   
One way to show that   is th  as   is by adding the same areas to both and 
then obtaining identical objects. The oldest proof adds four of the  a, b, c  triangles and 

  sides: 

                                                                                         

 
 s

e

 
 
 
                                                                     
                     
 
 
 

                                                                                       
 
 
 
 
 
 

                                                             The  2a   and  2b   are the full parts and thus, 
2b                      are equal to the two parts of                                              

       

2c . 
2a  

2 2a b  

2c .
2a  + 2b  2c ,e same

achieves identical squares with  a + b
 
 
 
 
 
                                 

      
 2b  

   2a 2c  
 
 
 

 

The other more direct way is to cut the squares themselves into sections and re-arrange them o 
that  2a   and  2b   becom s  c  The simplest of these is cutting only the bigger  2b   into four 
identical pieces through its center, and arranging these around the whole  2a   shifted into the 
center of  2c : 

2 .

 
 

                                               2a  

 
2a  
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4. Similarity
 

 

D 1.) Two point sets are  λ -proportional  or similar if there is a  P  ↔   P’  one to one  
correspondence between their points, so that  P’Q’  =  λ PQ  for all  P’ , Q’. 
If  λ  = 1  the two sets are isometric (iso = equal , metric = size).  

2.) The  S’  set is a  λ -projection  of  S  from an  O  point if every  P’  point of  S’  is  
obtained by connecting a  P  point of  S  with  O  and changing  OP  to  OP’ = λOP. 
 

                                 O                                        S      P                             S’             P’                     
                                                                                                                                     

 other can be moved over it with two of the  
followings: shifting, mirroring or turning.  

’, C’}  is 

 
 
  
  
 

T 1.) Any triangle that has equal sides with an

 λ2.) If  {A’, B -proportional  to  {A, B, C}, then it can be obtained as a moved 
copy of a  λ -projection.  

4.) 

T 

3.) Two triangles are similar if and only if they have the same angles. 
Two sets are similar if and only if they have the same angles.  

h a h b h c
Area of triangle = a  = 

2
b  = c                         

2 2

P A triangle mirrored to the middle point of a side makes a parallelogram: 
                                                                   
                                                                 Parallelogram’s area = s h 

                h                                               Triangle’s area  =  
2
h s  

                          s 

a b c

 f
twice  t  Thus, dividing the two equations: 

T Triangle construction from the three heights. Twice the area = h a  = h b  = h c .  
If the triangle constructed rom  ah  , bh  , ch ,  has  as  , bs  , cs , “secondary” heights, then 

 the area of his triangle = h a a b b c cs  = h s  = h s .

as
  a =

bs
 = b

cs
  and so the  a , b , c  triangle is similar to the  as  c , s  ,b

ry heig

 cs . This one can be 

e thr ides l its ht becomes   
 

 
                       c  b 

    
              

R of for  3.)  of the theorem in the previous section with similarity, without  
using  1.) and  2.): 

     

constructed from th ee s  and then increased unti  at   tertia ah .

                         
      hc                 hb                 sb        sc                              sc               sb                        ta

              
       
                                                             sa                                          

                  ha                                                                        sa                  
         

                   ha 
                                                                                                         a 

We can give a pro

 
                                    b 
                          c            
                           y     x     

                            b                                     c 
c
x   =  

b
y       x b    y 

                                                            

= c 

 
 
 



 
                 

5. Dividing Distances and Angles
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T Halving an angle  =  < S ⊥ R > 
                                                                                                           S 
                                       r                                                                

 

T onstructible special angles:                  60 
 = perpendicular line  ,   =                          

                                                       60          60 
 

T 
easure arbitrary  r  distance, (n – 1)  times on any angle. 

 and opposite side.  

                        
 
 

                                          
                   

          

                 

       
 
 

R and arbitrary angle. 
  many equal parts. But: 

t constructible for an arbitrary angle. In particular: 
ot constructible! In other words,  is not constructible! 

Since  is the third of  and it is constructible, thus obviously: 
  is not  

, are constructible? 
ed in a circle? 

d this made him to become a 
 a seventeen sided polygon, 

t known to be constructible before him. 

 
 

 

                                   a 
               α   
                         r                                       P                           R 

C
o0 o609

  
o54  , o30  can be obtained by halving these.

n  section of a  d  distance:  
M
Do the same on the opposite end
Connect the  (n – 1)  many pair of points with parallel lines:  

          
                                                                                                     

       r                                                                               

                                                               
                                                r                              

                                                                   r 
                                                          

                                                                                                                         

                                                                            
                                                            r 

                                                 
                               r 

       
                                                       
                                                                                               r 

                                                                          r 
 
                                                                        r 

The  n  section of an angle is not constructible for arbitrary n 
k2With repeated halvings, any angle can be cut into  n = 

The trisection of an angle is no
The trisection of o60  is n o20

o60  o180
 k2 .For particular angles, we can construct the  n  section, even if  n

The most important special question was, what sections of the full o360
can be constructIn other words, how many sided symmetrical polygons 

Gauss solved this problem when he was eighteen years old an
 statue stands onmathematician, rather than a philologist. His

because that was the smallest sided, that was no
 
 



 

R 
re  a line that 

wi the circle and the 
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Archimedes devised the following “construction” to get the ird of an  α   angle: 
e circle, draw

 th
Measu α   up in a half circle and from the obtained  P  point of th 
determines a distance equal to the radius between the other crossing th 

base line of the half circle! Then the angle between this line and the base line is  
3
α . 

         
Indeed, β +180 – 4 β  + α   =  180          β  =  

3
α . 

The problem is that we used our ruler as a measurer, which is not allowed. 
We can measure distances only with the compass. 
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6. Non Commeasurable Distances 
 

 This is the old Greek way of looking at the irrational distances.   

Indeed, if  b  is a unit then an  a  distance being irrational means that  a  

R
n
m≠   b.  

This is the same as  
m
a  

n
b≠    for any  m , n  natural numbers.  

In even simpler way, there is no  u  distance that would be common unit for  a  and  b,  
that is  a = m u   and   b = n u   is impossible.  
This was a better way of looking at irrationality, namely for finding actual examples  a , b  non 
commeasurable distances.  

Among the  
n
m   fractions, the vital relation is the expansion and simplification.  

3
  2   =

6
4

6
4      and here  is n exp a ansion of  

3
2   by  2, while  

3
2

6
4 .    is a simplification of  

The  
3

  can’t be simplified anymore2 , so it is a simple fraction.  

here is only one simple fraction among the equal fractions, or to put it another way, two 
 the practices of fraction 

ng at two equal fractions with 
if d,  end up to be 

at is minimal, in the sense of 
 was quite easy to show that 

T
simple fractions can’t be equal. This fact might seem obvious from
simplifications, but it’s far from obvious logically. Indeed, looki
huge numerators and denominators, nothing guarantees that when simpl ie  they
identical. The crucial concept was of course, the “minimality”.  
Among the equal fractions, there has to be a singular one th
having the smallest possible numerator and denominator. Then, it
all other fractions have to be extensions of this minimal. Thus, the minimal is also the simple.  

This “simple” versus “minimal” idea turns out to be still lingering among the general 
b
a

ll provide the two methods to create incommeasurable distances.  

 

distance ratios. And they wi

b
aOf course, if  a , b  are distances then there is no simplest or minimal among the    ratios.  

Already with a fix  γ  angle between them  we can contin ally create arbitrary sm, u all same 
ratios:  
 
                a 
                 
                                                                        a’ 
                  γ                                                         γ  
 
                             b                                                  b’ 
 
So the whole fractional simplicity and minimality seems meaningless directly.  
But, a new question can be asked about the  a , b  distances. Namely, whether a  u  unit could 

         m u 

be measured into both of them. That is whether  a =  m u  ,  b = n u  is possible: 
 
 
                        β  

 
             γ                      α  
 
                               n u 
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As we said, the Greek mathematicians realized that not all  a , b  distances can have common  u  
nit. The basic proportionality of Euclidean geometry means that if an  (a , b ,  ,  , )  
iangle leads to  a , b  that have common unit, then any  (a’ , b’ , 

u γ βα
tr γ  ,  ,  s  t . 

(a’ , b’ )  is a  p  proportional change of  (a , b)  then 

β )  is uch ooα

Indeed, if   
b
a   =  

b'
a'   =  

b
a
 
 

a d  b = n u  then also  a’ =  m p u  =  m u’  and  b’ =  n p u  =  n u’. 
  m on unit for  a’ , b’.  

ave no common unit, then the proportional  a’ , b’  have neither.  
nces without common units, is essentially finding   ,  ,   angles 

here this happens. Of course, two of them already determines the third.  
his theoretical idea of going for similar triangles is also the practical way to find distances 
ithout common unit. Namely, if  (a = m u , b = n u , 

p
p   and more 

importantly, if  a = m u  n
o, the  u’ = p u  is a co mS

In reverse, if an  a , b  h
o the key to find distaS γ βα

w
T

γ  ,  , )  implies another triangle  
’ = m’ u , b’ = n’ u , 

βw α
γ(a  ,  , )  so that  a’ < a  then the original triangle is impossible.  

bserve that besides the obvious fix angle, that is similarity of the triangles, the crucial 
ondi on i that th  new s es  a’ e old  u  unit. Plus, a decrease: a’ < a. 
e can easily guess the argument that makes the original triangle impossible: 

βα
O
c ti s e id  , b’ are made of the sam
W
Exactly due to the proportionality of the Euclidean geometry, we can create from   
(a’ , b’ , γ  , α  , β )  a new  (a’’ , b’’ , γ  , α  , β )  again and then again repeatedly.  
But then, a = m u  >  a’ = m’ u  >  a’’ = m’’ u  >  .  .  .   is a contradiction. 
Namely, how could multiples of a fix  u  decrease infinitely?  
If we require a bit more precision, then it turns out that this impossibility is a bit trickier then 
seemed. Indeed, a first version could be that the infinite decrease gets arbitrary small, yet 

bers don’t necessarily have to decrease to  0. 
it 
 

that  0  

’ 

 are made from 

can’t be less than  u. First of all, decreasing num
Secondly, a  0  multiple could reach  0  at once. So a better argument would make sure 

uis not reachable. Then, we must have infinite many  a > a’ > a’’ >  .  .  .  but, a = m   means 
that only maximum  m  possible multiples could at all be, namely  u , 2 u , 3 u ,  .  .  .  ,  m u.  
Unfortunately, this: 
 

(a = m u , b = n u , γ  , α  , β )                (a = m’ u , b’ = n’ u , γ  , α  , β ) 
 
method is still very vague. How could we guarantee the new  m’ , n’  without the particular 
knowledge of  m , n ? In other words, a’ , b’  should be obtained directly from  a , b .  
The solution is very simple. All we have to require is that the new  a’ , b’ 
multiples of the old  a , b , that is:      a’  =  p a  ±  q b    ,   b’  =  r a  ±  s b 
Here, p , q , r , s  are natural numbers and the    means adding or subtracting distances.  

ply 
r sums or differences too.  

±
Then, if  a = m u  and  b = n u,  it guarantees at once that  a’ =  m’ u  and  b’ =  n’ u , sim
because  p a , q b , r a , s b ,  are all  u  multiples again and thei
So our method for impossibility of  a  =  m u  ,  b  =  n u  is now: 
 
                   (a , b , γ  , α  , β )            (a’ =  p a ±  q b  ,  b’ =  r a  ±  s b  ,  γ  , α  , β )   
 
with the added requirements:    a’  <  a   ,   a’  ,  b’  ≠  0 
The  a’  <  a  goal of course especially emphasizes the  –  choices in  ± .  
This method is an  “opposite”  of the minimality among fractions.  

nother method is the opposite of simplicity. Namely, if: 
 
       (a = m u , b = n u ,  ,  , )                m , n  have common  f  factor 

A

   γ βα
 

Then, (a’ =  
f
m  u  ,  b’ = 

f
n  u  ,  γ  , α  , β )  is a similar triangle, so again we obtain an infinite 

decrease:  a  >  a’  >  a’’  >  .  .  .   
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s ial relation of  a , b  

ees  f  =  p.  

 
Such  f  common factor of  m , n  could be guaranteed by some pec
coming from the   γ  , α  , β .  
For example, qa  =  p qb   with a  p  prime number guarant
Indeed, (m u   p (n u    q)  = q)   qm  = p o, qn   s qm   is dividable by  p. Since  p  is p
m  must be dividable by  p  too. Using  m = p r , then  

rime, thus  

   (p r q)  = qp  qr   =  p   so   qn  , qn  = 1q-p qr    so   is dividable by  p  too and again, this 
e

 

T he simplest  (a , b , 45 , 90 , 45)  triangle: 

                                                                            45 
                                                     a   

                                                                       b 

                     b 

o
 

P 
 

 

We mirrored the  b  side onto the  a  side through the angle halfer.  
o  – b , which determined the same in the two triangles.  

 the other  b  side as  b – (a – b) = 2b – a .  
imilar to the original, because one of its angle was 

alread   90. So indeed: 
 
         ,  45 , 90 , 45 )  

qn
implies that  n  is dividable too. Thus, ind ed, p  is common factor of  m  and  n.  

T
 
 
  
 
                
 
                                                             45            90 
 
                                             
 
can be used for both meth ds: 

For the  “±  reduction” method: 
  

                                        a – b 
                                                                                
                     a                                        b – (a – b) = 2b – a  

 
                               
                                                                      a – b      

                                b                         
                                   

                                
                                                                      a – b    

                                                                      
                                                               
                                       b 

 

Thus, we btained the leftover  a
ined the leftover fromThis determ

The small  2b – a  ,  a – b , sided triangle is s
ring ofy  45  and an other is the mirro

    ( a , b , 45 , 90 , 45 )            ( a’ =  2b – a  ,  b’ =  a – b  
 
It’s also obvious that  a’ =  2b – a  <  a .  

rity and Thus, our first method, that is simila ±  combination from the old sides, proves that the 
a = m u  ,  b = n u  is impossible.  

 u , b = n u  were, then  a’ = m’ u  ,  b’ = n’ u  were too.  
n, giving infinite many smaller and smaller 
ave finite many smaller multiples.  

 

original triangle can’t
um
 have common units. 

ent: If  a = mJust to repeat the arg
Then, (a’’ , b’’)  could be created similarly and so o

n only hversions. But with a starting  a = m u  we ca
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The second “common  f  factor” method applies too, because: 
 
 
                  
              a 

 a2 = 2 b2  

o  a = m u  ,  b = n u  implies that  m , n  are both even. Thus, the   
a = m u  ,  b = n u  ,  45 , 90 , 45 )  triangle can be halved exactly on units:  

 

                                               

ut this  the repeated argument, it must have even many 
nits again. creasing infinite many  u  multiples. 
his is i  u  and  b = n u is false. 
o see th   and  n  directly:   

    
                                                                  
 
 
                     b 
 

 
 
 
 
S
( 
 
 
 
 
 
 
 
                                         a 
 
 
 
 

 
 
 
 
 
 
   b 

ilar too,

2 (

  
B  half triangle is sim  so with

 So we can half it again, and so on, getting de
mpossible, thus, our original assumption of a = m
e  2  common factor, that is the evenness of  m

   n u    

u
T
T
 2a  = 2 2b        (m u 2)    = 2)     2 2n    2m    m  = 2   is even     m  is even 

m  =  2 r   2     (2 r 2)   =   4 2r   =  2 2n      2n  =  2 r         is even     n  is even 
 

T he  “±

.) 

.) 

 
 

2n

T  reduction” method can be applied to: 

( a , b , 72 , 72 , 36 )                    with      a’ =  b       ,      b’ =  a – b 

( a , b , 90 , 67.5 , 22.5 )              with      a’ =  b       ,      b’ =  a – 2 b 

 
1
 
2
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P 1.) 

                                                                                                                 b          

   

  

  
                72                 36 
                                                 
                          b = a’                                               

                 
                               36 

               a 
                 

                   
                   72  

             b’                                                                  b               a – b   
                                       36  
  
  
  

b  a
b
− b'

a'  
b
a   =    =  

 
 .)               

22.5                                                                                    b 

                                                   45                                  b  
                                       22.5 

                              45               a – 2 b  

2
 
 
 
                  
 
 
 
 
       a           
                     
 
 
          
                                        
            b’                        45        
                                  22.5 
                            b = a’ 
 

b 2  a
b
− b'

a'   
b
a   =    =  

 

R he non existence of common units for  a , b  also means the non existence of common  T

multiples. Indeed, a = m u , b = n u    u = 
m
a  = 

n
b     n a = m b. 

 With   = , this can be represented as the existence of lines through the origin of a 
escartes coordinate system that never go through a grid point again. 
deed, the   =  or    angle lines from the origin must be such:  

      x

o90γ
D

o22.5 o67.5In β
 
                                         y 
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R Same  
b
a   ratio can come out from different  γ  , α  , β   angles.  

In fact, we can use other ratios to specify the angles for an  a , b.  
o oThis is exactly how the old trick works to construct    and  .  72 36

We derived the  
b
a  = 

b 2 a
b
−

  from the special relation of  o72   and  o36 .  

But the same  
b
a  = 

b 2  a
b an be obtained by creating new angles tha
−

  c t we are not even 

help to create the  ( a , b ,  72 , 72 , 36 )  triangle.  

T onstruction of   and  :                                                          

itrary  b  distance. Erect  90  and measure  

interested in. Rather, it will 

 o72 o36C

2
b   onto it. 

nd continue it with  

Start with arb

2
bConnect it with the other end of  b  a   in the opposite direction. 

his gives our  a . Using this on  b  for both sides gives the  72 , 72 , 36  triangle 

        
 

T
 

                                                                                                
                                  

                                                                                                36 

            a 

                                  a                      

                                                                       
  

 
 

                                                                                               a            

2
                                                                                         b

                                         

                                                       
2
b  

                                                90                                       72                        
                               b                                                                          b     
                                                                                                  

P  

                                                     
2
b  

                     a                                 β      

                                          
2
b      β                               a – b                             

 
                                            

hus, 

 β  

             γ                                                                                                
                       b                                                                        b           

 β  
  
 

T  
b
a  = 

b  a −
b   just as it was in the  γ  =  =   case. 

R  of   is also a method of the construction of a pentagon, because: 

o72 , β o36

 

The obtained construction  o72

5
360  = 72. 
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7. Constructibility 

 

D 

s crossings of constructible lines and circles.  

he distance between two constructed points is also regarded as constructible. 
he constructible circles are ones with centers as constructed points and radius as constructed 

The nstructible set is the line of the unit.  
the circles with centers of the unit ends and radius as the unit: 

 new points, namely two on the unit line and two crossings of the circles.  
These two crossing points of the circles can be connected with each other and also with all four 

e new lines can be obtained.  
 of crossing with each other and the two circles.  

 Above we merely started in a 

T 1.)  , , are constructible.  

.) The infinite fractiona

id already 

Constructible points and sets 
et two points be fix in a plane as the given unit. All other constructible points will be obtained L

a
The constructible lines are connectors of constructed points.  
T
T
distance.  
Finally, the angles between constructed lines are also regarded as constructible.  

first co
The second constructible sets are 
 
 
 
 
 
 
 
 
 
 
Thus, we obtain four

points on the unit line. So, nin
These ten lines will have a lot
Then new lines and circles can be constructed. And so on.  
There is no fix sequence to obtain all constructible sets.
seemingly logical way. The obtainable sets are of course still well determined.  
Indeed, a set is constructible if there is a particular finite sequence that obtains it.  

o06  , o30 o90
2.) The infinite unit grid is constructible: 
 
 
 
 
 
 
 
 
 
3 l grid is constructible: 
 
 
 
 
 
 
 
 
4.) Connecting any two points on the fractional grid, they cross in a fractional gr

there.  
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P 1.)  
                             

         90 
                           60           60 

                                   60 

.) We can repeat the unit and use  

 
 
 
 
 

 

 lines can be regarded as  x , y  coordinates and then any fractional  s  sloped and   
uation:  y = s x + c 

 

      

 

 
                             60                                         30 
 
                           60           60                                
  
 
  
 
 
 
 

o90 . 2
3.) Crossing already the points of two grid line will cut all fractions. 

 

 
4.) Two grid

c  crossing of  y  has the eq
 

             y 
                   

                            s  = 
x
y     y                                                      

                                                                      c        x 
 
                                                                      x 

 easy to see that it leads 
to fractional solutions.  

 

R his “criss cross completeness” of esting, but seems as a detour from   
onstructability. The real rea  is going to be useful is the 
ythagoras Theorem. Usually it is e , but actually it also means that 
ny  d  diagonal distance in a coordinate system can be calculated from the  x , y  coordinate 

an

                                 

 
 

The crossing of two such lines is a linear equation system and is

T  the fraction
son the whole c

xpressed a

a
oordina

s  2a

l grids is inter
te view

 + 2b  = 
c

2cP
a
dist ces: 
                                                                       

                                     y      d = 22 y  x +  
     x 
 
 
 
Befo  constructible, I prepare 
that w

d 

 

re we even go to our main object, which is proving that o20  is not 
ith an easier, but just as big surprise: 

 
 
 



 
 

 

There are no fractional lines that would be in  
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T 

P
o60 . 

Such two lines could be in two possible situations relative to the unit grids measured from the  
crossing of the lines:  
 
 
 
                                                                                          a 
 

 b)  (1  a)  (1 22 −+−                        1  a 2 +                a                                                                   
                             60                  

                           
                                                   b                           60                        b 
                        1  b 2 +                                                                                                                                          

oth lead to the same impossibility but we only follow the first: 

  =    =  

 
 
 
B

2
2

2 ) 
2

 1a     1  b ( +−+22 ) 
2
32b)a( + b a 2  ba 22 ++    1  a ( +   +    = 

                          ) 1  a (  
4
3 2 +   +  2b  + 1  +  ) 1  (  

4
1 +  1  a 2 +   1  b 2 +a 2  –     =   

                          2  ba 22 ++   –   1  a 2 +   1  b 2 +  
 

 1  a 2 +   1  b 2 +   3   =  2   area  =  a + b   •
 

So   3  =  
   1b    1a  

ba
22 ++

+   =   
  b a 2    2  

ba
−
+    would be rational.  

R structed with a lim ass, as only a measurer 
o. For example, the 

 

The fractional grids could be con ited use of the comp
on a line, plus a o90  ruler. But this would lead to non fractional distances to
diagonal of a unit grid is   2   and it could be measured onto other lines.  
I think  o60   could still not be obtained this way. If anybody knows how to prove this, I’d like 
to hear about it.  

ow we turn to our goal to prove that   is not constructible at all. This of course means at 
onstructible.  

The amazing thing about this proof of the inconstructibility of   is that it first translates the 
whole problem in algebra

T Algebraization heorems 
1.) Distance constructability condition. 

 co truct y if it is expressible by  + , –  ,   ,  , 

 o20N
once that we can not trisect angles in general, because a  o60   is c

o20
: to 

T

  A distance ible if and onl • ÷is ns   from  1. 
In short, if it is square root expressible.  

2.) constru il
  is constructible if and only if an  x  distance is constructible for which  = 3 x + 1. 

on constructability co on. 
If   = 3 x + 1  has no square root expressible solution then    is not constructible. 
 
 

 

o ctab ity condition. 20  
o20 3x

3.) o  n nditi
3 o

20
20x
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P it’s easy to construct the square root of a  d  distance as follows: 1.) First of all, 
 
 

                  
1
h   =  h  =  

h
d     2h  =  d    h =  d  

 

 
The  th
that  s
exp  so on, everything is from  1.  

 dis it 
mbiguous when we use earlier crossing points. So here, the coordinate representation 
elps again. Indeed, this way we can talk about square root expressible points too. 
amely meaning the coordinates. In fact, square root expressible lines are connections of 
ch points and square root expressible circles are ones using such center and radius.  

hen all we have to show is th

                                          x                                  
                                                     

                          
        

 
 
  = 3 x + 1                              x 

           
                               

                          
 
                          
        
                          

 
3.) 

 1.)  set of real numbers is operation complete if the  + , –  , 

                    h 
                                   
 
         1                          d 

 reverse is that any constructible distance is square root expressible from e distances 
 are used in the construction. Indeed, then the used ones are again quare root 
ressible from what they used, and

It would be better to go backwards through the directly used tances, but this is a b
a
h
N
su
T at crossing of lines and circles keeps square root 
expressibility. This is not too difficult.  

 
 2.)                                                                    

 
20

1       
20                         

            1                  

                                                                

                                

                              

              x3
 
  
                                         
                                      x 
                                                                     
                                           1                                x 
 
                x           1                1       1  

               1                                            1 

                                     x 2 

Trivial by  1.)  and  2.). 
 

D A   , • ÷  of members is member  
 to be non zero.  

oot base for an  x  real number if  S  is operation 
complete and there are some  u , v , w  in it, so that  x = u + v 

too. At  ÷   the divider is assumed
 
2.) An  S  set of real numbers is a square r

 w .  

 

 
 
 
 



 
 
 
3.)  ,  .  .  .  ,   is a square root extension sequence if: 

 ,  .  .  .  ,  so that: 

c.)       =  {x ; x = u + v 
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0 N

a.)     0E  = the fractions 
E  , 1E E

b.)     There are  0w  , 1w  ,  .  .  .  , Nw   in each  0E  , 1E NE ,

 w 1n−  so that  u , v  ∈  E 1nE −n  } 

T .) Every square root expressible number is element in a square root extension sequence. 

2.) In a square root extension sequence     .  .  .    and  

1
 

0E  ⊂  1E  ⊂   ⊂  NE

1nE −   is a square root base for any  x  ∈  nE . 
 

.) If  a  + b x + c  has an    root and an  S  square root base for  

 
.) If  a , b , c  ut   a  + b x + c  has no root in  hen  

it has no root in any square root extension sequence.  
Thus, it has no square root expressible root either.  

.)  – 3 x – 1 has no root in    
hus, it has no square root expres ot.  

  is not constructible. 

P Sta ro s. 

  3x  +  2x3 1 1

contains  a , b , c , then  S  contains a root too.  
x x  

3x  +  2x4 ∈  0E   b 0E  t

 
3x 0E .5

T sible ro
o20

1.) rt f m any square root of fractions and then widen outward

 5  
3
2  :    Example:  For     +

 5     5    
3
2     ,  ∈  1E

3
2 +    ,     ∈  2E

3
2 ∈   +   3E  

 
  w2.) The widening is obvious because  0  ∈eve yr    and we can use  u + v nE  with v = 0. 

For   is operation 
comp

the square root base “extension” we only have to show that every  
lete. + , –  , 

nE
•   are obvious and for    observe: ÷

 
 wq  p

 w q)u   p (v   wq  v pu 
22

−+−
  )w q (p )w  v(u −+   =   w u +   

w q p +
 v  = w  

−
  =  r + s 

)w q (p )w q (p −+
 

w  3.) Suppose  1x = + v   u  with  , v , w    u ∈  S.  
3)w  vu ( +   +  a 2)w  vu ( +   +  b )w  vu ( +   +  c  =  0    that is: 

w   +3u  + 3 2u v w   +  3 u 2v w  +  3v  w 2w   +  a u  + 2 a u v   a  w  + 
b u

2v
w   +  c   =   0    re-    arranged as: 

+ [3 v  +   w  + 2 a u v  + b v ] 
  +  b v 

w   =( 3u  + 3 u 2v w + a 2u  + a 2v  w + b u  +  c)   2u 3v   0 

If  [
]     [
)     ( w   ∈      ]  ≠  0  then  w   =  –   ,  so  u + v  S. 

If  [      ]  =  0  then  (     )  =  0  too and putting  2x  – v w   into  3x  + a  + b x + c    2x
w w w )3)  2)we get  (u – v  +  a (u – v   +  b (u – v   +  c  =   

(          ) – [         ] w w   =  0 – 0   =  0.  So    is root too. 
Since   , thus  – a – – s root too. (Se L mma) 
But  – a –  –   =  – a  –  (u + v

2x

1  2x 1x  2x   i e ex   ≠

w ) w )  –  (u – v 1x 2x    =  – a  –  2 u   S. 

 

∈
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Lemma:  
If    are roots of   a  + b x + c  then  – a –  –   is root too. 
Proof: 

e are  p , q , r  that 
 a + p x

2.) If 
 + c  then  is root of   + p x + q 

 so that  
 b    (x    –   =   

+ +  +  x  – 

 
4.) .  

  im  in  too.  
s um

 

5.) uppose a simple 

3x  +  2x1x  ≠  2x 1x 2x

1.) For any  3x  + a  + b x + c  and  x   ther 2x 1
3x  +  2x  + b x + c  =  (x – 1x )  (  + q)  +  r 2x  
 1   is root of  3x  + a 2x  + b x + c  then  r = 0. x

3.) If  1x 2x   are roots of  3x  + a 2x  + b x 2x ≠   2x
and there is  x 2x  + p x + q  =  (x – 2 ) (x – 3 ).  xx3

So  3  + a 2x  + x + c  = – 1x )  (x – x (x  3xx 2 ) )
3x  –  ( x1 2 3 1 2 1 2 1 2 3

So, x  =  – a – x  – x   is root too.  
x x ) 2x  + ( x  x x  3x  + x x  x  3x ) x  

3 1 2

By the widening   1E  , 2E  ,  .  .  , NE . Thus, by  3.) 0E  ⊂
a root in E  plies root  1E , then in  2nE −   and so on, finally  0E n n−

But this wa ass ed to be false.  

 
b
a 3) 

b
a (

b
a  fraction were root:  – 3 S  – 1  =  0.  

hen, – 3 a  –    =  0.  
very prime factor of  a  is also o  a  so of    and  b  too.  
very prime factor of  b  is also of  – 3 a  , so of    and  a  too.  

b  can’t have prime factors, so they are  1. But  a  =  b  =  1  is not a solution. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
 
 
 
 

 3a 2b 3bT
E f  3a – 3  2b , 3b

2b  – 3b 3aE
Thus,  a , 
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. Isometries Of Space8  

 

D Q  denotes the interval between  P  and  Q.  
Q = RT  denotes that the two intervals have the same length. 
Q  ||  RT  denotes that the two intervals are parallel.  
Q  RT  denotes that the two intervals are not parallel. 

D .) A transformation is any  P’  assigned points to all  P.  
.) S’ = {P’ ; P S}. 
.) P  is fixpoint is  P’ = P. 
.) S  is a fix set if  S’ = S. 
.) S  is conserved set if  S’  S. 
.) P* = middle point of  PP’. 
.)  = middle perpendicular plane of  PP’ = perpendicular to  PP’  through  P*.  
.) The identity is the  P’ = P  transformation.  

D   P’  non identity is: 
.) Isometry (iso = equal, metry = length) if  P’Q’ = PQ  for all  P , Q. 
.) Shift if all  PP’ , QQ’  are: 

                  P                         P’ 
b.)     same length  

al                                                   Q                         Q’ 
3.) Mirroring to a    plane, if for all  P,  = .  
4.) Turn with an    angle around an  L  line with one of its directions chosen,  

ion of  P  to  L,  

e would be  –   =  360 – 
 

ings: 
     P’Q’  are parallel to  PQ. 

t not all  P’Q’  are parallel to  PQ. 
  go through a fix  L  line. 

ot all   go through a fix  L  line. 

P 

es of the previous theorem for an isometry are: 

P 1.) 
                   
 
                      
 

 
 
 

P
P
P
P  ∨
 

1
∈2

3
4
5 ⊆
6
7 ⊥P
8
 

A
1
2

a.)     parallel                                          

c.)     same direction
Π Π ⊥P
α

if  P   denotes the perpendicular projectL

then  P’ P   is the  α   turn of  P P   in the plane perpendicular to  L, L L

looking from the chosen direction.  
Of course, looking from the other direction, the angl  α α . 

T Any  P’  transformation must obey exactly one of the follow
1.) All  PP’  are parallel  and all  
2.) All  PP’  are parallel, bu
3.) Not all  PP’  are parallel, but all  

d n
⊥P

4.) Not all  PP’  are parallel, an  ⊥P

The four exclude each other and one must be true. 

T 
1.) Shift 
The four cas

2.) Mirroring 
3.) Turn 
4.) Turn then mirroring or turn then turn.  

All  PP’ are parallel by definition and P’Q’ = PQ    PP’ = QQ’.  
                               P                            P’    

                        Q                              Q’ 
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= PQ     = 

  

 
ust be true, so  =   or  

  QQ’, then  , so they cross in an  L  line. 
t  P  and  P’  and  Q  and  Q’  are not only equal distanced from this  L  line, 

urned with the same angle. That is, if    and    denote their drop to  L, then   
                           

               

                                                                                                     Q’ 

If all    go through  L, then of course, this same turn works for all  R  to get  R’. 
4.) Let  PP’    QQ’  and turn  S  around the  L  line, that is the crossing of    and  

ith the    angle determined by  P’  and  Q’. If this turned set is   then it is isometric 
to  S’  and this    S’  isometry has at least two fix points, nam ly  P  and  Q. 

ift, so we have a mirroring. If not all  ’  are 
rn around the  PQ  line, because these are fix, so all  

D Special isometries are:  
The t n i  

lane perpendicular to  L. 

3.) 

pe  c ed because their order was  
turn. 

 If an  L  line is 

ro  
3.) ir

4.) 
 m

 
 

 
 
2.) Let  P’Q’  be one that is not parallel with  PQ. Then,  P’Q’ ⊥Q . ⊥P
                                                   
                              P                           P’ 

                            Q                                   Q’ 
 

                                                 ⊥P = ⊥Q  

For any third  R  point,  R’P’ ∨  RP  or  R’Q’ ∨  RQ  m  ⊥R ⊥Q  ⊥P
3.) If  PP’  ∨ ∨   ⊥P   ⊥Q

We claim tha
but are t LP LQ

     
                                                                                                      P                     
 

        P LP P’∠   =  Q LQ Q’ ∠  :                                          L 

                P’ 

        Q               

                                                                                        
 
 
   
 

⊥R

⊥Q   ⊥P∨

αS ,
e

w α

α

If all  R R’  are parallel, then by  1.)  and  2.), we have a shift or mirroring, but since we 
S   

α

αR Rhave fix point, we can’t have a sh
parallel, then by  3.), we have a tu

⊥R   go through them. 

hree basic: shift, mirroring, tur , and the follow ng three combinations:
1.) A turned mirroring is a turn around an  L  and a mirroring to a p
2.) A shifted mirroring is a shift and a mirroring to a plane parallel to the shift. 

A screw around  L  is a turn around  L  and a shift parallel to  L. 

T In the s cial ombinations, using “and” instead of “then” was justifi
immaterial. For example, the screw is a turn then shift or shift then 

T All special isometries have conserved line. 

P Trivial one by one.  

T conserved, then the isometry is special, namely: 
1.) L  is either fix or mirrored to a  Π   plane or shifted in itself.  
2.) If  L  is fix then, P’ is either a mirroring to a  Π , containing  L  or a turn a und  L.

If  L  is m rored to  Π , then  P’  is either the same mirroring in the whole space or 
a turned mirroring to  Π   around  L. 
If  L  is shifted, then  P’  is either the same shift in the whole space or the same  
shifted irroring to a  Π   containing  L, or a screw with the same shift.  
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P 
If  L  has only one fix point  O, then any other  P  must be mirrored to  O  to have 

1.) If  L  has two fix points, then the whole  L  is fix. 

If  L  has no fix points, then for any  P , Q  on  L  we have  PP’ = QQ’. 
fix points, we can’t have a shift, so it must be  

a mirroring to a    and it must contain all fix points, including  L. 
 are parallel, then we must have a turn around  L  because all    must 

contain all fix points, including  L.  
f it,   contains  L, so     

 same mirroring as in  L, or 

  R ds,  
y e an  plane in which  P’  is still an isometry. 

s in  L. 
.) There is only a line fix in , through  L, which in space is a    plane. Then, in ,  

we have a mirroring to    and thus, a shifted mirroring to it in space. 
.) Only  L  is fix in  and then we have a turn in  and thus, a screw in space.  

T “Turn then mirroring” replaced by special isometries: 
1.)  turn then mirroring to a plane going through the turn line is a single mirroring. 
2.)  turn then mirroring to a plane p n line is a shifted mirroring. 
3.)  turn the mirroring to a plane crossing the turn line is a turned mirroring. 

                         
 
                  

                                    

PO  =  P’O’  =  P’O. 

2.) If all  RR’  are parallel, then since we have 
Π

If not all  RR’ ⊥R

3.) Π   is conserved too and either it is fix or for all  R  point o Π ⊥R
is turned in itself. If  Π   is fix, then in the space we have the
if  Π   is turned, we have a turned mirroring. 

4.) If  R   is the drop of   to  L, then the  R LR   distances are preserved. In other worL

looking perpendicularl to  L, we hav  Θ
But here, L  is a fix point, so we have the following possibilities: 
a.) The whole Θ  plane is fix, and thus, P’  is the same shift in the space a

Πb  Θ Θ
Π

c Θ Θ

A
arallel to the turA

A

P 1.)     L                                                                                  R      Π  
                                          R                            R’  

 

 

              Π                  α

                                                 from top:                                 L 

                                                                                                             
2

 

α  

 

 
Th rinus, all  RR’  will be parallel and  L  is fix, so we have a mirro g. 

2.)     L                                                                           Π –
2
α         Π         Π +

2
α  

                          

                          
                           
 

                          Π   

                                        from top:                      L .    
                                                  

 
 

We turned  Π   with  ±
2

. These are mirror of each other to  Π   and also, the  αα   turn of  

Π –
2

  is  Π +α
2

. Thus, Π –α
2

  is conserved by the turn then mirroring. α

If a line is conserved, it either has a fix point and is a mirroring or hasn’t and is a shift. 

–Here  Π
2

  can’t have fix points, so it’s shift in itself, and thus theα ed  whole plane is a 

shifted mirroring to this same line. 
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Then, layer by layer, the whole space is a shifted mirroring to

  
 

  Π –
2

3.)  

α .  

                                     P L 

                              

 
 
 
 
 

By . r io em at is mirrored in 
al 

e e

T “Turn then turn” replaced by special isometries: 
1.) .) Every   turn around an    line followed by a  d  shift perpendicular to    is just  

  
.) For every   turn around an  L  line, and any    line parallel to  L, the turn can  

ft r r to   
 parallel to or crosses the first, can be  

lane as the first, can be  

P s fix: 
 
                                                     
                                             L                                          
                                                                         
                                       
                                                       d 
 

the L 
 

2.) 
he  line into the first. Thus, the first line will be a fix line.  

 be the parallel with  

la d 
be c

L. 
The e

T 

 

                                  L                    
                                                                                                          

                             O                                                                         O 

              
α

      

P  
 
                                             Π                                    Π  

  3 )  of p ev us theor , enough to show that there is an  L   line, th0

itself. The  P  point of the above picture defines such  0L , if  P  and  αP   are symmetric
to the p rp ndicular to  Π . Indeed, αP   mirrored to  Π   will fall on the continuation of 
the  PO = 0L   line. 

a  α 0L 0L ,
an  α  turn around an  L  parallel to  0L .

0Lb  α
be replaced by same  α   turn around  0L   followed by a shi  pe pendicula 0L .

2.) A turn followed by a turn around an axis that is
replaced by a single turn. 

3.) A turn followed by a turn around an axis, that is not in the same p
replaced by a screw.  

1.)                                    a.)  L  can be located as the point in the figure an itd  i

α  
0L  

α  

                                       b.)  d  can be established from  figure and   becomes fix. 

There are two lines so that the first turn turns the first line in the second, while the second  
turn turns t  second

3.) Let  1L   be the axis of the first and  2L  of the second! Let  
that crosses  L . Then by  1.)  b.), the turn

0L 2L  

1  around  2L   can be replaced one around  0L   
followed by a shift perpendicu r to them. Then by  2.), the turns around  L  an L   can  0

repla ed by one around an  L. 
The followed shift can be decomposed into a perpendicular and parallel component to  

 perpendicular shift m lts into giving a new turn by  1.)  a.).  

1.) l one. Every isometry is a specia
2.) Every isometry has a conserved line.  
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T Every isometry can be replaced by a sequence of mirrorings, namely: 
1.) A shift can be replaced by two mirrorings, both with perpendicular plane to the shift. 
2.) 
3.) Every special isometry is: 

t  is  fir

 

P 1.) 
 
 

                      P P’ 

 
2.)                                     L 

                                

                          

 
 

3.)  basic. 

 A turned mirroring is two crossing mirrorings followed by a perpendicular one.  
crew is a turn then shift or shift then turn and thus is: 

irrorings followed by two perpendicular ones that are parallel or  
two parallel mirrorings followed by two perpendicular ones that are crossing. 

 

 
 
 

A turn around  L  can be replaced by two mirrorings with planes crossing in  L. 

a.) one mirroring or  
b.) two mirrorings or  
c.) hree mirrorings, where the last  perpendicular to the st two or  
d.) four mirrorings, where the second two are perpendicular to the first two. 

 

       
 
 

                                             

 
 

                 
 
 
       
                                P                                                   P’ 
 

 
a.) A mirroring itself is
b.) A shift is two parallel mirrorings by  1.). 
 A turn is two mirrorings with crossing planes by  2.) 
c.) A shifted mirroring is two parallel mirrorings followed by a perpendicular one.  

d.) A s
two crossing m

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 



 
                                
 

9. Parallel
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ity 
 

 The most fundamental two concepts of geometry are the points and distances.  
In the modern view, the points are simply the elements of the whole space and lines , circles, 
planes and other geometrical objects are set of points in the space. Or to put it an other way, 
these are special subsets of the space. The connecting interval between two points is also a set 
of points, in fact it is the simplest special set by which all the others will be defined.  
Sometimes we simply call this connecting interval as a distance, but it is not quite correct, 
because the proper meaning of the distance is its length. To measure a length, we need a unit 
length, so we first need a comparing of distances. The simplest relationship is the equality of 
two distances. Or to say it properly, two connecting intervals having the same length. This is 
also a basic concept.  
So as we see, actually we have three basic concepts: Points, connecting intervals and equality 
of such connecting intervals. A, B, C, D, E, F, G, H  and  M, N, O, P, Q, R  letters will be used 
for points, while  I, J, K, L, S, T, U,  .  .  .  for sets of points. For the connecting interval, we 
simply put the two points next to each other. So for example, AB  is the set of points on the 
connecting interval of  A  and  B.  
The intended meaning of  AB  is the shortest connection from  A  to  B. This also means that if 
we pick a  P  and  Q  point from  AB, then not only  P  and  Q, but all the shortest connecting 
points from  P  to  Q  must be in  AB. Indeed, otherwise we could shorten  AB.  
So in exact form:     P , Q   AB    PQ   AB.  

ecting intervals. But it doesn’t guarantee yet, the 
It didn’t even use the concept of lengths.  

f lengths will be simply denoted as  AB = CD  meaning that the  AB  and  CD  
onnecting intervals are equal long.  

easuring tape 
er  CD. Before 

 a bigger 

. Amazingly, we could have gone the opposite way too, that is start with 

 
 
                 

ths 

our above approach is more natural.  

R

∈ ⊆
This is the most fundamental axiom of conn
full meaning of intervals as shortest connections. 
The equality o
c
The physical meaning of this equality is not as simple as it seems. If we take a m
or a rigid object that is equal to  AB, then we have to move it to place it ov
Relativity, nobody would have worried about this, but now we all heard of the change of length 
caused by motion. Of course, that effect of Special Relativity only causes problem, while the 
object is in motion, so moving and then slowing down should be okay. On the other hand, 
General Relativity claims that gravitation changes the length too, so that causes
problem. Anyway, we can ignore these problems and rely on our intuitions.  
The connecting intervals and their equality of length offers an obvious road to define smaller 
and bigger lengths too. Indeed, all we need is an axiom that claims that for any two intervals, 
exactly one of them will be equal to a beginning interval of the other, and then this can be 
defined as the smaller
a smaller, bigger comparison of lengths as basic concept and define the sets of connecting 
intervals through this. Indeed, a  P  point is on the  AB  interval, if and only if  AP  and  PB  are 
minimal. In other words, for any  Q  point that is not on the interval, AQ  or  QB  (or maybe 
both)  must be bigger than  AP  or  PB: 
 
         A               P                                    B 

                                Q 
 
With this approach, AB = CD  or  AB < CD  would only mean the comparison of leng
assigned to pairs of points, not to their connecting interval and the actual interval would only 
become meaningful later. I think that 
The idea of measuring one interval onto the other to define the smaller and bigger length, can 
be modified to define addition and subtraction of lengths too. Then,  AB < CD  can be replaced 
by  AB = CD – PQ  or  CD = AB + PQ.  
The most plausible claim about lengths is that for any three  A, B, C  points, AC + CB > AB. 
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                             C 
                                                                                                                                                          

                          
            A                                    B 
 
This so called triangle inequality expr

 

esses that from “A to B”, the connecting interval is 
orter than going through an “unnecessary”  C.  

B  is shorter than any  
A  +  +  .  .  .  +   + B  broken connection: 
                     

                        

mply the combined sets of wider and wider intervals. So  < AB >  can denote the combined 
t of all intervals that contain  AB. Of course, it is still far from obvious that if  P  and  Q  are 

oints from  < AB >, then this same line would be obtained starting from  PQ.  
 sho t: P , Q  < AB>    < AB >  =  < PQ >. To prove this, we need again new axioms.  

es as basic concepts on  seemingly avoid this complication because for 

 used the equal sign for the equality of two sets meaning that 
it contradictory to our previous usage of  AB = CD, 

ort, the  =  sign means 

points of  that two lines can only 
ne ed,  they had two  A  and  B, then these would 
 a n po nt is also called as crossing for lines.  

After the lines, usually the planes are introduced, but if we restrict our attention to a single 
lane, then the real problems are easier to see, so in the followings we only deal with this.  

 common point at all, which in space is 
bvious because two randomly chosen lines simply avoid each other. If we are in one fix plane, 

 each other. 

 
 

sh
By repeated application this also implies that  A

1C 1C 2C 1nC − nC nC

1nC −                                       2C
                                1C               .  .  .            nC  

 
                                           A                                   B 
 
The triangle inequality doesn’t follow just from the comparability of lengths. It requires some 
axioms. Once however it is proved, we have the original meaning of connecting intervals as 
shortest connections indeed established.  

ines are usually regarded as basic concepts but with our approach they can be defined as L
si
se
p
In r

ly
 ∈

Those who regard lin
any two points they have to order a line. And thus, for one line the different pairs of points 
must e. In addition at the end, they still have to regard lines as sets of points.  determine the sam
Above, in  < AB >  =  < PQ >  we

ey have the same points. This is a little bth
which only meant the equal length. But, otherwise we would need two equal signs. One for sets 
and one for lengths. The actual equality of the  AB  and  CD  intervals is practically never 
needed, so we can use the other meaning instead of this. So, in sh

gth. equality of sets except for intervals where it means the equal len
at any two  a line determine it, it’s easy to showBy the fact, th

have one common point (or no ). Inde if
determine the same line. Having commo i

p
Just above we mentioned that two lines can have no
o
then it is still possible that two lines don’t cross each other, indeed this is what we see as 
parallelity. There are two alternative approaches to parallelity. The first is to claim that the 
parallel lines keep the same distance from
 
 
 
 
 
The other is to say that they are going in the same direction. If we ask more about what we 
should mean by same direction, then we soon realize that it can only be specified relative to a 
third crossing line. Indeed, the two parallels must have the same angle to the third one.  
 
                                                                             α  
 
                                                                  α  
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Everyone would guess that the first approach, that is the kept distance is easier to define 
precisely than the second, because that requires the concept of angles as opposed to distances.  

tained points form a line at all. Indeed, 
tervals and lines are minimal connecting “curves”, so a horizontal minimality moved 
inimally vertically could very well be non minimal anymore.  

           

                                                          minimal line 

 became obvious already for Euclid that parallelity is the crucial problem of geometry.  
t non crossing, having fix distance or having same 

rove their identity, he went into strange logical 
ircles. Finally, he chose as axiom the assumption that if two lines are both having less than a 
ght angle to a third towards each other, then these two lines must cross on this side of the 
onnecting line: 

        
           

As it will turn out, the equidirectionality is simpler than fix distance. But already now we can 
see an advantage of the equidirectionality as follows: 
By drawing two equal angled lines to a third, at least we know that we are dealing with two 
lines. On the other hand, if we start with one line, then measure up the same lengthed intervals 
from every point, then it is not so obvious that the ob
in
m
 
                                                  minimal? 
 
minimal          d                d                   d                   d                   d 
 
 
  
 
It
He firmly believed that the three concep s, 
direction are identical, but when he tried to p
c
ri
c
 
                                                                    L 

                           α  
                                                                                      α  , β   <  o90     L , L’  cross 
                                      β  
                                                                             L’ 
 
Later, it turned out, that a much simpler assumption could still prove the identity of the three 
form of parallelity, namely John Playfair and Legendre stated about the same time: 
 
Axiom Of Parallelity:     In a fix plane: 
 
For an  L  line, and an outside  P  point, there is only one non crossing  L’  line through  P:  

  non crossing 
                 
 
                 
 
 

sing line. To their biggest surprise instead of a contradiction weird, but 
n who went into this jungle and became 
as Janos Bolyai, the son of an old friend of 

replied by saying that he can’t 
lf, 

as f course, a terrible blow to Janos. Gauss indeed, explored the  

 

 
                                                        P                                   single  L’
                            

                                                         L 

In spite of its beauty it was still regarded as too complicated and so, up until the 19-th century, 
many mathematicians wanted to avoid this axiom by somehow deriving it from the simpler 
other axioms. Some of them attempted to find such derivation by the following way: They 
assumed that the Axiom Of Parallelity is false, that is assumed more non crossing  L’  lines and 
then tried to reach a contradiction from this. This in effect would indeed make a proof for the 
nique non crosu

beautiful possibilities followed. The first perso
be a meaningful reality wconvinced that it must  

Gauss. When the father h s owed his son’s results to Gauss, he 
praise the young man, otherwise he would have to praise himse because he already realized 
all that long ago. This w  o
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possibilities of many non crossing lines, but left his notes in his drawers because he thought the 

orld is not ready yet. Later, when he learnt that a third person, Lobachevsky, also realized 
sed 

obachevsky, but still didn’t tell him about the young Bolyai.  
in classical 

see why, we have to jump to just a few decades forward, when Beltrami 
finally made the crucial step not only in the history of mathematics, but probably in the whole 

d that the points of a euclidian plane itself can be used to 
show that a non euclidian plane can exist.  
If we shrink a plane towards a central point so that the whole plane fits within a disc, then 

                                                      

                                                               L 

ut this tricky idea is still not the point! To see why this meant such a big leap in the history of 

obachevsky realized that such 

ally from the others. But how can this be if at that 

ms.  
 the followings, we go back f leap of Beltrami, and simply investigate the 

on crossing lines. Unlike Gauss, Bolyai and 
es just to see what a wider world may look 

ke, we will obtain some nd amazing for the parallelity axiom itself. 
amely, the first seven theorem we don’t have to assume a single non crossing 

one such will automatically imply it for all. 
inally, only the eighth theorem scription how the world without single non 

w
that something lies behind the non euclidian parallels, Gauss finally openly prai
L
These three people, Gauss, Bolyai and Lobachevsky still remained with
mathematics. To 

history of human intellect. He realize

obviously the lines will bend into curves. This itself is an interesting idea because it shows that 
the same truths can be kept by replacing the lines with other special curves. But Beltrami went 
further and realized that properly changing the lengths, we can even change some truths while 
keeping others. Amazingly with this proper change, the infinite lines of the plane will not bend, 
rather become the chords in the disc. Of course, the circle around the disc does not belong to 
the disc and the chords are actually infinitely long, because towards the edges, smaller and 
smaller real distances of the disc would mean bigger and bigger imaginary distances. Most 
importantly, all the simple axioms about the plane remain true, but obviously we’ll have more 
non crossing lines to an  L  through a  P  outside: 
 
                                                             P 
  
 
 
  
 
B
human thinking, we have to go back a bit and remember where all the non euclidian 
investigations started from. They wanted to prove the parallelity axiom from the other simple 
axioms. Then, as an alternate strategy for this, they assumed the parallelity axiom to be false 
and tried to reach a contradiction. Finally, Gauss, Bolyai, L
contradiction will not be obtained, rather an amazing new geometry can be developed. This 
personal conviction of them is very admirable, but still didn’t prove that the parallelity axiom 
can not be derived from the simpler ones. Beltrami not only created the above mentioned 
strange model of plane geometry, but realized that it proves it without a shadow of a doubt, that 
the parallelity axiom is not derivable logic
time the logic of mathematics was not even worked out yet. And that’s the whole point!  
Beltrami’s realization was the actual seed that spawned the whole new mathematics, Set 
Theory and Logic. Indeed, we don’t have to know about sets or mathematical logic, and still 
obtain something fundamental about them. Namely, even if we don’t know what “logical” 
means exactly, one thing is sure: If from some assumptions, others should follow logically, 
then in every reality where those assumptions are true, all those that “logically follow”, should 
be true too. Now, in the above disc model of the plane, all the simple axioms of normal plane 
are true. But then everything that logically follows from those simple axioms must be true 
there too. And of course, the single non crossing through an outside point is not true and so it 
can’t be a logical consequence of the simpler axio
In rom this giant 

single n
 new possibiliti

thing very positive a
s will prove that 

use 
 will be a de

possibilities without the assumption of 
Lobachevsky who investigated the
li
N
line for all lines and outside points, beca
F
crossing lines can look like.  
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The crucial assumption for our following theorems is the concept of angle.  
Our intuitive conviction that two crossing lines determine a certain angle must be reduced to 
the concept of lengths. And indeed, what we really mean by equal angles is the fac

D 

t that 

                 
                 
                 
                 
                 
                 
 

 

T1 

                 
                                          L  and  U  are equidirectional to all connectors. 

.) If two lines are equidirectional to a third, crossing them in  P , Q  points, 
then the lines are mirrored of each other to the  M  middle of  P  and  Q.  

.) uch two lines can only cross in a int that is mirror of itself to  M. 

,  

then any line equidirectional with  L  to any connector from  P  is non crossing. 

 connector from  P. 

P 
 

                        

 
. 
lines in opposite 

directions and connecting these  P’  and  Q’  with the  M  middle point of  PQ  will give 
 in other words, 

indeed, P’  and  Q’  are mirrored to  M.  

 

measuring the same lengths on the sides, we get identical connecting distances.  
 
                                     A                                                      A’ 
                                                                                                              C’A’ = CA , C’B’ = CB 
            C                                                       C’ 
      
                                                                                                                        A’B’ = AB 
                                 B                                                      B’ 

This is actually the definition of equal angles. Then the axiom we need is that once two angles 
are equal, the same equality of connecting distances to equal side distances is true for all 
possible side distances.   

                                     U  is unique non crossing  with  L  through  P     
                                                                 ↓ 

 
1

 
2 S   C  po
 
3.) a.)    If such two lines exist, then all lines going through  P  and  Q  will cross. 

  b.)    If there are non crossing lines, one through  P  and one through  Q
then any equidirectional lines to  PQ  will not cross.  

 
4.) If there is a non crossing line with  L  through  P, 

 
5.) If there is a  U  unique non crossing line with  L  through  P,  

then  U  is equidirectional with  L  to any
 

6.) This  U  is equidirectional with  L  to any connector. 
 

1.) 
                  P’                                P  α  

                                                                          α  
       
                                                                   M 
                                                                      α   

                                                

                                                                   
                                                               Q                                      Q’ 

The same  α   angle appears  at  P  on the other side of the  PQ  connector
Then this means that measuring any distance from  P  and  Q  on the two 

identical triangles. Thus, P’M  and   MQ’  are on one line and equal, so

 
 



 
 

 
2.) First it seems, that such two lines that are mirrored to an  M  point can’t cross at all.  

e, then mirroring  C  to  M, 
would connect the  C  

and  C’  points contradicting that two points determine only one line.  
d that  C’  will be a different point 

from  C. If  C’  is the same as  C, then the two lines doesn’t make a contradiction.  
Of course, then  C  is a mirrored point of itself, which seems just as contradictory.  

d, then  C  has a distance from itself. Such  C  could be called a weird point and can 
t ints only
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Indeed, we can argue that if they cross in a  C  on the right sid
we get a  C’  that again must be on both lines. Thus, the two lines 

This argument however, is faulty because it assume

Indee
be easily excluded if we assume tha po  have  0  lengths. Yet, we don’t make this 

y ith the idea of weird points a little bit longer. 

                       P 

 
 
 

 
  a.). 

.) Special case of  3.) b.). 

.) If  U  weren’t equidirectional with  L  for a  PQ  connector, then we could draw an  
quidirectional with  L  through  P, which were a different and non crossing by  4.).  

p having only one non crossing through  P.  

assumption right now, and pla  w
3.) a.) 
                                                      

                                                                            
                               

                                                         C’ 
                                                                    
                      C                                                                                     

Sweeping through all possible connectors from a  P  point, we obtain all lines through  P.   

b.)     It is merely an other way of saying 
 
4
 
5

e
This would contradict the assum tion of 

6.) Let  P’Q’  be a connector, so that  P’  ≠  P. Let  M  be the middle of  P’Q’.   
Lets connect  P  with  M  to obtain a  Q  crossing on  L. For this  PQ  connector the 
equidirectionality was proved in  5.). But this means being mirrored to  M. 
And this means being equidirectional to any line going through  M, including  P’Q’. 

                                                Q                       Q’ 

x distanced from an  L  line is controversial. 
 the perpendicularity and rather use any 

 L’  is fix distanced with  L  from a  PQ  connector if: 
P   L’ , Q  L  and measuring any common distance on  L’  and  L  from  P  and  Q  in the 
same

                                     
           L 

        
        

 
 
 

    
                                             P’                         P 
 
 
                                                                  M 
 
          

R We already mentioned that the concept of being fi
Now, we still generalize that concept, avoiding
connector as the starting “distance” between the two lines: 

D
∈ ∈

 direction, will lead to  P’  and  Q’ points that are the same distanced as was  PQ. 
 
                                       P                               P’ 
                                                                                                     
 
 
                                                                                                                L’ 

                        Q                              Q’ 
                                                                     PP’  =  QQ’      P’Q’  =  PQ. 
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T2 Equidirectionality to two non halving connectors avoids crossing. 
 

                       L’  is fix distanced with  L  from one connector. 
                    

              L’  is equidirectional with  L  to two non halving connectors. 

                 
                          L’ is fix distanced with  L  from all connectors. 

                 

P nced and let  PQ  be an 

 
                     A                     P                  P’ 

 
                                          B                Q’                    Q 

We measured  AP  from  B  to get  Q’  and  BQ  from  A  to get  P’.  
hen  PQ’ = QP’  because of the fix distancedness. Then since   

PP’ = AP’ – AP  =  BQ – AP  and  QQ’  =   BQ – BQ’  =  BQ – AP  thus, PP’  =  QQ’.   
These are in opposite directions, so the lines are indeed equidirectional to  PQ. 

2.) Let   and    be the two middle of the non halving connectors and let  PQ  be a  
ain  A , B  on  L  and then the 

            D 
    L’ 

 

      

                                                                                ↓ 

                                                      ↓ 

                        L’  is equidirectional with  L  to all connectors. 
                                                               ↓ 

                                                                                ↓ 
                                                L’  doesn’t cross  L. 
                                                                                        

1.) Let the one connector be  AB  from which  L  and  L’  are fix dista
arbitrarily chosen new connector: 

 
 
 

  
 

T

 
 1M 2M

third connector. Connect  P  with  1M   and  2M   to obt
same distanced  C , D  on  L’: 
 
       C                                     P                                           
                                                                                                                               

                                          α        β                                               γ          

2                         1M                                                     M  
 
                  β      α                               γ  
                                                                                                                                  L 
                A                                     Q                                                      B 

 
he pairs of  α  , β  , γ   angles in the picture are equal because we used cT onnectors 

 is that   +  = through  1M   and  2M . All we have to show β γα . And indeed: 

     C                                                                                             D 
      L’ 
  

 
  
                                                                                                                             

                                                                                                  γ          
                                                                              

 

 

                  α +β                                
                                                                                                                                  L 
                A                                     Q                                                      B 
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3.) edness. Lets measure 

’ 

 

4.) uppose  L  and  L’  would cross in a  C  point. Measuring back any same distance from   
ncedness would imply 

oint 
b  we obtained it by 

r example, we can measure back a  d  
istance and obtain a  c  length connector. Then approaching  C  arbitrarily close, we 

is contradicts the triangle inequality.  

T3 Trian
 
.) Outer angle at a corner can’t be equal to the inner angle at an other corner. 

.) Outer angle at a corner is bigger than the inner angle at an other corner.  
 
.) Two inner angles together are less than  

4.) 

P 1.)    
  
                                                                             
 
                          

 

Let  PQ  be a connector from which we want to show the fix distanc
any same distances from  P  and  Q  in the same direction to obtain  P’  and  Q’. 
 
                                    P                              P’ 
                                                                              L           
 
 
                                                                                         L 
                               Q                           Q’ 

PQ’  used as connector, the equidirectionality implies  P’Q’ = PQ. 
 
S
C  on  L  and  L’, we would get a connector to which the fix dista
that  C  is this fix distanced from itself. This seems like again just a weird crossing p
of the two lines, but actually this is a deeper impossibility, ecause
measuring back arbitrary distances from  C. Fo
d
would have points at  c  distance. Th

gles if there are no weird points. 

1
 
2

o180 . 3
 

The three inner angles together are less or equal to  o180 . 

                                                     B 

β     α                                                                  

                                                       α     α  
 
                                        C                                           A                                        C’ 

 
We measured the  BC  length from  A  on the continuation of  CA  to obtain  C’.  
If  α   were equal to  β , then the  ABC  triangle were identical with  ABC’.  
But then the angle at  B, in the  ABC’  triangle would be also  α .  
Thus, the full angle at B were  α  + β  = α  + α  = o180   and so,  C , B , C’  were on a line 
contradicting that  A,B,C is a triangle that is, B  is not on the  < CA >  line.   
Of course again, this contradiction would be avoided if  C  and  C’  were the same points. 
If there are no such weird points, then the contradiction proves that  α  ≠  β . 

 
2.) By  1.)  we only have to show that  α  <   is impossible. If this were the case, then  

measuring  
β

α   on  AB  at  B, we would get a new triangle leading to the same 
contradiction as in  1.): 
                                                    
                                                  α  
 
                                                      α    α  
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3.) By  2.), α  > β , thus adding  α  to b th sides, α  +  o α  = o180   >  α  + β . 
 

4.) Let , that is  BC  AC.          B 

                                                                 C                    A 

 
        

 
 α  ≤  β ≤

 

Lets mirror  C  to the  M  middle of  AB  to get a new  B’.  

                               B                                B’    β ’ =  γ – γ ’ 
                                                                                    
        
        
        

                   C                                 A 

 

                                            M 
                                                               
        γ – γ ’                γ ’          α     β  

 

AB’ = BC  ≤ AC            γ ’   ≤   β ’  =  γ – γ ’            γ ’ ≤   
2
γ  . 

The angle sum of the  A, B’, C  triangle is:  +  + α β γ  – γ ’ + γ ’  =   +  + .  
,   triangle were  + , then so would be of the 

, B’, C  triangle but with having an angle half or less than  

α β γ
So, if the angle sum of the  A, B  C  o180 δ
A γ . 
R
w

epeating such replacements, we ou d w l reach a triangle with   +   angle sum, but 
ith one angle being less than 

Then, the other two angles would be still more than  , contradicting  3.).  
 
 

T4 

  A triangle based on  L  and cornered across at  P  has    angle sum. 
                       

in  t ro ui o connectors from  P. 
                 

                       
  angle sum. 

 
 

P 
                                                                                                              L’ 
                          
 
                                    
                                                                Q                            Q’           L 

 
 
2.) n alving.  
 
 
3.) 
 
 
 

o180 δ
 δ . 

o180

Triangles for fix base line and corner above. 
 
  o180
                                                         ↓ 

 An  L’  l e h ugh  P  is eq directional with  L  to tw  
                                                               ↓ 
                               L’  is equidirectional to all connectors. 

                                                      ↓    
          Any triangle based on  L  and cornered at  P  has  o180

1.)                                       P          

                                          γ    β       α  

                                                γ               α                                       

Follows from  1.)  and  T2  1.)  because  PQ  and  PQ’  are no  h

The picture above in  1.)  proves it again.  
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T5 Triangles for changing lines. 
 
        There is an  L’  so that they are equidirectional to two connectors from  P  L’ 

                 
                             There is a triangle with    angle sum. 

                                                                              ↕ 
                                 Any triangle has    angle sum. 

              ↕ 
equidirectional to all connectors. 

.) By previous theorem, if an  A, B, C  triangle has    angle sum, then all triangles with  
k, from  A, B, C  

we can reach any  A’, B’ C’. Indeed, lets place  A  over  A’  and  B  onto  < A’B’ >: 
 

                                     
 
                                                       

                                                

 
  ADC =   A’B’C’  =  

6   to t rs from  P  

∈
                                                               ↕ 

o180
  

o180
                                                                  

All  L  and  L’  that are equidirectional to one connector, are 
 
 

P 1.) Trivial again by picture in proof of  T4  1.).  
 

o1802
a common corner and base line across will be such again. With this tric

                                            C’ 

                     A = A’                      D                B’ 
                                                               B 

                                                       C 

ABC = 180     ACD = 
 

o o180   o180   o180 . 

 
3.) Follows from  1.)  and  T2  1.). 

 
 

T                       U  is equidirectional with  L wo connecto ∈  U   
 

 
 

L, through  P, then all  L’  lines in between  
them are not crossing either. Thus, the non crossings form a “bundle”. 

              

L 
 
 
 
 
 
 
 

                                                                                  ↓
                               U  is unique non crossing with  L  through  P. 

P  1.) If two  1L  , 2L   lines are non crossing with  

 
                                                                                                  2L  
                                                        P                                                L    

1L                                                                                     
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   and    to  L  and there is a line through  P   
quidirectional to both connectors, then the    angle of the non crossing bundle is 

aller than   + .  
 

                       

 ew  Q’. The  PQ’  connector must have less than  

 
2.) If two connectors from  P  go in  α β

e δ
sm βα

                                                       α        β  
                                                       β         α   

                              α           β  
                                                     
  
 
3.) There are arbitrary small angled connectors to a line.  
 Lets start wit ny  β   angled  PQ  connector and measure the connector on  L  to get a  h a

n β
2

  angle by  T3  4.). 

 
 

                       Q                       Q’                                           Q’’ 

                                          < 

And so on, we always get less than half of the previous angles. 

   P 
 
 
 
 
                 β  

2
β

4
β

8
β                                         <                                           < 

 
.)  there is an  L’  line through  P  that is equidirectional to two connectors from  P,  

dle is a single line.  

                                                                    P 

Thus, by  2.), the non crossing bundle must have  0  angle, that is  L’  is the single non 

T7           

                       
     T ny  P  outside.  

P By  T 5   all  L  lines and  P  outside have an  L’  equidirectional to all connectors. 
Thus, by  T6  this  L’  is the  U  unique non crossing through  P. 

  
 
 
 
 
 
 
 
 

4 If
then the bun
Indeed, by  T2  1.)  this line is equidirectional to all connectors from  P.  
Then we can apply  3.)  in both directions to obtain pairs of arbitrary flat connectors to 
which this line is equidirectional.  

                                                                                                                                           L’ 

                                                                       L 

 
 
 
                                                                     

crossing. 
 

   There is a unique non crossing  U  line with a fix  L  through a fix  P 
                                                             ↓ 

here is a unique non crossing  U  line with any  L  through a  
 

1  5.), and  T
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T8  If the hrough a  P  point then: 
 le through  P  are non crossing either.  

.) The connectors and the equidirectional lines to them turn towards each other.  

 there are no non crossings with  L  through a  P  point then: 

5.) 
 

1.) A crossing line has other crossing ones arbitrary close in both directions.  

 from  P  and draw a perpendicular line to this at P. 
  to this 

perpendicular connector. Any other  L’  line inside the bundle will have an    angle to 

r hand, its angle to  L’  will go 
from  –   to  . Thus, th o ang ill be equal at exactly one position of the 
connector: 
 
                                P 

 

 

re are more non crossings with  L  t
1.) The edge lines of the non crossing bund
2.) All non edge non crossings are equidirectional to exactly one connector.  
3
 
If
4.) All lines through  P  are equidirectional to exactly one connector. 

The connectors and the equidirectional lines to them turn in the same direction.  

P 
The edge of the non crossings has only close ones in one direction.   

2.) Lets draw the perpendicular connector
This will be the middle line of the bundle which is equidirectional with  L

α
this middle one and  β   to the edge. It will also lean toward  L  on one side, say the right.  
Lets change the perpendicular connector toward the right to flatter and flatter positions.  
It’s  γ   angle to  L  will go from  o90   to  o0 . On the othe

o90 β e tw les w  α

                                                                                                          
                                                                                                                            L’ 

                                                                 

α  
β

γ  
                                                                                                                               L 

We already mentioned Beltrami’s model for more non crossing lines through a point.  
odel already known for two 

ch are the north 
ply mirror  

  to the center of the sphere. The circle’s going through antipodal points, that is having their 
e earth, such are the equator and 

through them, because 
is circle. 

Also, between any two points, this main circle is the shortest path on the sphere. So as we see, 
the main circles are behaving as lines. Unfortunately, we were wrong above because not any 

l pairs through 
which  and south pole. An 

cross
this p
point th
we ar
So the leng
 
 
 
 
 
 
 

 

R 
Strangely, for the “weirder” no non crossing lines, there was a m
thousand years. Indeed, the spherical geometry was investigated by the greeks.  
The farthest, opposite two points of a sphere called antipodal. On the earth, su
and south pole. Of course, every  P  point has an antipodal pair, because we can sim
P
center at the center of the sphere are called main circles. On th
the time zone circles. Every two points determine a main circle going 
the center of the sphere and the two points are on a plane that crosses the sphere in th

two points will determine a unique main circle. The exceptions are the antipoda
 infinite many main circle go, like the time zones through the north

other consequence of this “error” is that if the main circles are the lines, then two lines will 
 not in one point but rather in the two antipodal ones. With a simple trick, we can get over 
roblem, and obtain a “perfect” model. The antipodal pairs should be regarded as single 
s. The strangeness of ese new points is then easy to see, because going on a main circle 
rive back to our points, in fact not in a full circle, but already at halfway.  

ths are limited! 



 
 
 
Part Three: Complex Numbers
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1. Definitions 

R  a line, then  

D 
 of a point is the opposite of it, that is  – P  from  P. 

This means the mirroring of  P  to the fix  O: 
 
                                                                          P 
 
 

               – P 
 

.) he addition of two points, that is   means that the first, that is  P, is regarded as  
a new origin and  Q  is positioned from there. Thus, the  OQ  distance is shifted along the  

 

                                                              P + Q 
                            Q 

 

 

 2.) 
 

 
 
 

 

The real numbers are the comparing of distances or if we choose a unit length on
the points of the line themselves can be regarded as the real numbers. 
It is amazingly simple to generalize this and regard all points of a plane as numbers.  
This has consequences in two directions: In algebra, equations will have wider solutions and in 
geometry the coordinate systems become simpler.  
And yet, this whole approach is avoided in high schools. This is solely due to the reluctance of 
teachers who themselves are unfamiliar with complex numbers. But complex numbers can not 
be avoided! Engineering and science must use them! So in tertiary education they are 
introduced but seem strange to students and so the cycle repeats, complex numbers stay out of 
basic mathematics. It is interesting to compare the complex numbers with calculus. The 
question whether calculus should be taught in high schools always reoccurs, but complex 
numbers are consistently avoided, even though they are much more basic and simpler too.  
I hope the followings will convince the readers to give a chance to complex numbers in the 
wider education.  

The points of a plane can be regarded as positions if we choose a fix  O  origin. 
1.) The simplest operation

                                               O 

2 T   P + Q

OP  line until  O  goes to  P. 
 

 
 
                                                       P 
                            O  

3.) Q – P  is simply defined as  – P + Q. 
 
                                                                              Q 
 
                                          Q – P 
                                                                                                               P 
                                                                                    
                                                                       O 
                                 – P 

T 1.) P + Q  =  Q + P 
Q – P + P  =  Q 
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P 1.)    
 
                                                                         P 
                          

  OP  is shifted to  Q, to get  P + Q  then  O, P, Q, P + Q  is a parallelogram, so  OQ  is 
ifted to the same point.  

2.) d then  + P  is shifting it back to  Q.  

 To define the multiplication of points, we need more than a fix  O  point of origin, namely we 
e between  O  and  U  is the unit length. 

                 
efine  

 

                 Q                             P + Q  =  Q + P 

                O 
 
If
sh
Q – P  is shifting  Q  towards  – P  an

D
need a fix  U  unit point too. The  u  distanc
 
                                       O                u                 U  
The same basic idea is used to d Q  P •  = PQ  as was for  P + Q, that is  Q  will be 

rning and changing of 

  
  P 

                     O                             U 
 

he “repositioning” means that  PQ  must be relative to  OP  the same as  Q  was to  OU.  
 oth r words, the  O , U , Q  triangle m ilar to the  O , P  , PQ. 

hus, the  Q , O , U  angle is the same as the PQ , O, P. And  O , PQ  length is  OQ 

repositioned by using  P. But now not a shifting is applied, rather a tu
unit length. So, P  will be regarded as the new  U.  
 

       PQ                                        
                                        
 

           

             Q 
                                

                                  
                                  
 
 
  

T
In e ust be sim

OU
OP . T

D | P |  : =  distance of  P  from  O, using  u  as unit.  
<P>  : =  angle of  OP  from  OU.                                                     

                     P 
                            | P |                                        
        

 

 
                             

                               <P> 
 
                       O           u = 1            U 

T 1.) | PQ |  =  | P | | Q |                         
2.) <PQ>  =  <P> + <Q> 

P                                               PQ                          1.)     | PQ |  =  | Q | 
u

  =  | P | | Q | 

                                                                              
                                                                             2.)     <PQ>   =  Angle PQ , O , U  =  

| P |

                                         Angle  P , O , U    +   Angle PQ , O , P  =            
                  < P >  +  Angle Q , O , U  =  <P> + <Q> 
                   

 U 
 
 
 
 

                           Q               
               
              P

                                                     
                                                    
 
                       O                            



 
 
 

T 

  

D 
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PQ  =  QP 

P Both  |   |  and  <   >  are the same for the two sides.

Q
P   : =  the point  R  so that  RQ  =  P.  

T  
Q
P   =  

| Q |
         | P |

Q
P   =  <P>  –  <Q> 

 t  keeps it a parallelogram.  

e an .  
e unit circle are called the unit 

T 

P a parallelogram

(P ±  Q) R  =  PR ±  QR 

The urning and increase of 

D 1.) All  P  points of the plane are determined by their  | P |  distanc d  <P>  angle
The  u = 1  distanced points from  O, that is the points on th
points. These are determined by merely their α  angle and can be denoted as  α .  

α                                  
 
                            α  
                O                   U 
The unit vector of a  P  point is the unit vector on  O P  and is denoted as    
Thus, 

oP .
oP  = >< P >< P  .  and  P  =  | P |   =  | P | oP  

 
2.) Our earlier rules for the multiplication of points can now be expressed as: 

 
 Q  =  | P |P  >< P   | Q | >< Q   =  p α  q β β βα +  α    =  p q   =  p q  

 
3.) The bar notation is especially useful for concrete angles. In fact, U itself can be denoted  

 zero angled unit vector, that is  0as the . The four perpendicular unit vectors are:  
0 90 180 0 270 90− 90   ,  ,  =  –   ,   =    =  – 
 

90                                                                    
 
 
                                                                O 
                                  180  =  – 0                              U =     0  
 

                                                                 
 

270 90− 90   =    =  – 
 

 Usually  0 90 0 90 ,  , –  , –   are abbreviated as  1 ,  i  , – 1 , – i . 

T 1.) 
 
2.) 
 

3.) 

 In other words, the unit vector is identified with the number unit  1.   

– 1 P  =   – P  

    2i   =   – 1 

    
i
1    =   – i 
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P 

 

1.) – 1 P  =  180   pα   =  p 180α +   =  p α−   =  – pα   =  – P  

2i   =   i i   =  2.) 90  90    =   180   =  – 1 

3.) 
i

  =  1
 90 

  =   0 90−   =   – 90   =  – i  

2. Exponentiation 
 

D n )n(p  α p  α p   α p n α  α   . . .   α  α +++.  .  .    =  p p  .  .  .  p  ) α (p   =    = 
x) α (p   =  )x(p  xα  

 

T y) 1.) x) α (p    α p      =     ( y x ) (p α +    =  y x p +   y) (x  α +  
x x x x x  xβ)  (α +  ) α (p    ) β (q      =     ) β q  α (p   =  p q   2.) 

x

β q
α p
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ x

q
p
⎟
⎠
⎞

⎜
⎝
⎛3.) 

x) (q  β
     =     

x) α (p    xβ)(α −    =  

yx4.) )α(p ⎥⎦⎢⎣
     ⎤⎡  =     xy)α (p xyp   xyα    =  

 

D x  P   : =  set of all  Q  points for which    =  P .  
or  x  =  2  we omit this  2  from the root. 

T 

xQ
F

x
1

P   = x
1

  (p α )   =  x
1

p    
x
α  x P   ∈   

⎪⎭

⎪
⎬
⎫

x  α p   =  
⎪⎩

xx
⎪
⎧

α360α⎨ ++ .  .  .  .  .  .  .  .  .  .   ,      ) 
x

360 2 
x

  (  x
1

p      ,    )  α  ( x
1

p      ,      ) 
x

 (  x
1

p  

T ts. For example: 
 
For  x  =  n natural, there are exactly  n  roo

{ } 180 , 0 
⎭
⎬
⎫

⎩
⎨
⎧1 + ) 

2
360  

2
0 ( 1  ,   

2
0     =  { } 1  , 1 − 1   =   0   =    =     , 

 
 1  −   =   180  { }  , 90   =  270 { } i  , i −   =  

 
{ }240   ,  120  ,  0  3  0 3  1   =    =   

 
{ }300   ,  3  1 −   = 3  180 { } =  180  ,  60      = 300   1   ,  −      ,60 

 
{ }270  ,  180   ,  90  ,  0 { } i   ,  1   ,  i   ,  1 −−4  0 4  1    =      =     =         

 
{ }315  ,  225   ,  135  ,  45 4  180 4  1 −   =    =     

 

 
 
 



 
  - 

3. Complex Form
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R Giving the points of a plane as  p

 

α   is usually called the polar coordinate form.   
We already mentioned in  Part 2 Section 4, the Descartes coordinate system.  
With the use of the Pythagoras theorem and the  sin , cos , tan , so called trigonometric 
functions, we can calculate from polar to Descartes and back: 

                                                                                
p

 
 
            y                   x                        P 
α   =  (x , y)  =  (p cos  , p sin )                                               

                                                                                              
                                                                                

α α

                                      p                   y            

(x , y)  =  pα   =  ) 
x
y tan  x 2 arc (  y 2+

                                                                                           O                                           x                                    
 

nly the Descartes coordinate system is usually taught in high school, in spite of the fact that 
the polar system just as useful. F xample, Newton’s major result, the derivation of 

epler’s First Law can much easier be proven with polar coordinates than with Descartes’.  
The Descartes system can be dramatically oved if instead of two separate coordinates, the  

ctually represented as the sum e coordinates. Of course, x  and  y  can not be 
mply added because that would be just an other number on the single real number line.  

We need separate notation for the points of the perpendicular  y-axis. And this is easy if we use 
e 

                                               α                                                            

O
 is or e

K
 impr
 of thP  point is a

si

 90th  =  i  unit on it. Indeed then, y  is actually  yi, so  P = x + yi.  
y the way, the letter  i  comes from the word “imaginary”, though in the way we introduced it 
ere was nothing imaginary about it. But when it was first used it simply meant a number so 
at its square is  – 1. There is such number on the real number line, so looking from there, it 
ems imaginary.  
he h ge advantage of the  x + yi  so c mplex form is that all the coordinate calculations 
ome out “by themselves”: 

Complex form:  P = x + iy 

T 

B
th
th
se
T u alled co
c
 

D 
 

P ±  Q  =  (x + iy) ±  (v + iw)  =  (x  ±  v)  +  i (y ±  w) 
 
P Q  =  (x + iy) (v + iw)  =  xv + ixw + iyv + w = (xv – yw)  + i (xw + yv)  2i y
 

Q
P   =  

iw  v +
iy x +   =  

iw v +
iy x +  

iwv −
iwv − =    

22
  =  

2 ywi  iyv  ixw  xv −+−
 w v + 22  w v

 xw) (yv i  yw)  (xv −+
+

+   =   

          22

yw  xv +   +  22

 xw yv i −  
 w v + w v +
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R 
ating it with unit length: 

The complex multiplication when calculated from the polar form, even leads to the sums of 
sin and cos “by itself”. Repe
 

β             βα +                          =              α  
cos (α +β ) + i sin (α +β )    =    (cos  + i sin ) (cos  + i sin )  =   
cos  cos  + i cos  sin  + i sin  cos  + i  sin   =  

)   Thus,  
os )  =  cos  cos  – sin  sin       

D A chosen  OU  unit interv s the “grid” points by suring the unit repeated
horizontally and vertically. 

                                               O      U 

hese grid points are the same as the (x , y) coordinate points with  x  and  y  whole numbers.  
n even better way to regard them is the  x + iy  complex numbers with  x  and  y  wholes. 
hen the above listed coordinate calculations of  + , –  and  

 α β  βα
2i  sβ β β n α βα α α

cos α  cos β  – sin  sin β  + i (cos α sin β  + sin  cos  βα α
c (α +β β βα α
sin (α +β )  =  cos α  sin β  + sin α  cos β  
 

al determine  mea ly, 

 
 
 
 
 
  
 
 
T
A
T •   show at once that these three 
perations of whole complex numbers lead again to wholes.  
or  + , –  this is natural from the original meaning too, because shifting a grid point with a 
rid v lue goes again to a grid. For a  PQ =  p

o
F
g a α   qβ   multiplication, the original meaning of 
sing  Q  as the new unit doesn’t explain at once why  PQ  will be a grid. 

The following argument helps: 

                                      iQ 

   

 as  P  =  (x , y)  =  x + iy  but with new  Q  and  iQ  units, instead 
f the  1  and  i. In othe  wor s, Q s re eated  x  times, while  iQ  is  y  times. These are grids 
y  2.), and so their sum is gr  aga n. 

he division of complex wholes of course leads out of them, in other words, the ratio of two 
u  as among whole numbers, here too the dividabilities 

 

u

1.) The  o90   turned version of  Q, that is  iQ  is obviously a grid: 
 
  
 
 
                                                                                   Q 
 
 
 
                                              O     
 
 
2.) The repetitions of  Q  or  iQ  in their own directions are again leading to grids. 
 
Then  PQ  can be visualized
o r

 
d
id

  i
i

p

st

b
 
T
grid points doesn’t have to be a grid. J
are the most crucial. 
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While among naturals, every number is dividable by  1, and among positive and negative 
wholes, or integers, every number is dividable by  1  or  – 1, here among the grids, we have 
four units, 1, – 1,  i , – i  and every grid is dividable by these. So now we should call a grid 

f two grids, both different from the unitscomposite if it is the product o . The non composite 
bers.  

as  of number theory to two 
 wholes, and so they are also called Gaussian integers.  

em about primes among the naturals is that every number can be 
niquely decomposed into prime factors, except of course the order of the members.  

deed, even though it is not a composite, 
 then it could be repeated as many times 

s we wish, so the decomposition weren’t unique. Similarly, among complex wholes the  
 , – 1,  i , – i  units are not regarded as primes, and then indeed every complex whole or 

composed into primes.  
stion, what grids are the primes. Most amazingly, this shed 

ew light on the already known fact that half of the natural primes can not be written as square 
, the  4k + 1  

grids could be also called as primes, just as among the natural num
auss w the first who realized this amazing generalizationG

dimensional grids or complex
he most fundamental theorT

u
This is the reason why  1  is not regarded as a prime! In
o it should be a prime, if we allowed it to be a factors

a
1
Gaussian integer can be uniquely de

auss completely answered the queG
n
sums, while the other half can be uniquely. Namely, the  4k – 1  primes can not be
an be. Indeed, 3 ≠  22 b  a +  , 5 = 22 21 +  , 7 ≠  22 b  a +  , 11 ≠  22 b  a +  , 13 = 22 23  +  ,  

   5 
           (2 + i3) (2 – i3)  =  = 13 ,  .  .  .  and so on. 

his follows from a basic law proved by Gauss, namely that for grids not 
n the  x , y  axis, the primes are merely the ones with    being a natural prime. 

c
17 = 22 4  1 +  , 19 ≠  22 b  a +  ,  .  .  .  The “reason” for this is that among the complex wholes 
the old  4k + 1 primes are not primes anymore. 
Indeed, (1 + i2) (1 – i2)  =  21  – 22 2 i   = 21  + 22  =

 22  + 23  
This of course doesn’t explain why exactly the  4k + 1  ones are such and why the 
decomposition is unique. The uniqueness follows from the fact that these two factors are 
always primes. And t

2x  + 2yo
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4. Unique Prime Factorization Through The Grid Fractions 

R already showed among naturals this same root, so now only repeat the main idea and then  
do the details for gird numbers. The most practical appearance of prime factors comes 
rough the simplification of fractions. We cross out the common factors of numerators and 

enominators. Slowly we get the impression that these omittable factors are inherent to a 
umber. If we ask people to list all the factors of a number, then they usually proceed by 
ividing the number with gradually increasing primes. For example, for 120, they would go as: 
20  =   =  

 

I 
re
th
d
n
d

  =    =  1  60  2 ⋅ 30  2  2 ⋅⋅ 15  2  2  2 ⋅⋅⋅ 5  3  2  2  2 ⋅⋅⋅⋅ . Of course, we can go in other order 
o, for le:   =  20  2  3 ⋅⋅   =  4  5  2  3 ⋅⋅⋅   =  2  2  5  2  3 ⋅⋅⋅⋅ . to examp 120  =   3 40 ⋅

Somehow it feels obvious that we ended up with the same factors. Yet, we can show that this is 
r from obvious. Indeed, if we assume the possibility of different breakdowns, leading to 

ifferent prime factorizations, then omitting the common prime factors, it would simply mean 
at: .  .  .     =  

fa
d

.  .  .  th   p  p 21 ⋅⋅ mp ⋅   q  q 21 ⋅⋅ nq ⋅   with different primes on the left and on the 
ght hy couldn’t be that  ri . What makes this so impossible? W 13  11  3 ⋅⋅   =  .  
sing bigger numbers, it soon becomes clear that nothing makes this impossible, in fact the 
o sides can be very close. Yet never equal! The real reason for this is a wider truth about 

umbers that don’t even have to be primes, only relative primes. Two numbers are called such 
lative primes if they have no common factor, except the obvious  1. If one number is multiple 

f the other, that is  a = mb  then  b  is still regarded as common factor so  a , b  are not relative 
rimes. The simple general fact that makes the different prime products impossible to be equal, 
 that if a number divides a product, say  a  divides  bc, but  a  and  b  are relative primes, then  
  must divide  c. Indeed, if this is true, then  

19  17 ⋅
U
tw
n
re
o
p
is

.  .  .     =  .  .  .  a   p  p 21 ⋅⋅ mp ⋅   q  q 21 ⋅⋅ nq ⋅   is 
possible because all  p-s  are relative prim   

-s  can divide any of the  q-s. But our new ge ral fact can be put in an even better form and 
mazingly it also relates to our elementary school   

ividing  bc  means  ma = bc, so  

im es to the  q-s  a
ne

nd on the other hand, none of the

 experiences with fractions. Indeed, the  a
p
a

b
a

m
c = . Then, a d  b  being lative p eans tha  the    an  re rimes m td

b
a

m
c     fraction is simplified completely and the cla that  a  m e eans that the  im ust divid   c  m

fraction is merely an expansion of the  
b
a   fraction. So what we claim i

rse, are not simplified! If we 
mplify them, we get back the fractions that we expanded. So in other words, we claim that 

ith 

. Cle there h  be a smallest version am
rely expansions of this minim e were fin ed, because then the 

tic idea h t if

 is that a s mplified 

f
si
raction can only be equal to its expansions. Expansions of cou

two simplified fractions can not be equal. This again seems natural from our experiences w
small fractions, but if we imagine simplified fractions with bigger and bigger numerators and 
denominators, then we see the non obviousness of our claim. Luckily here at fractions a simple 
and heuristic way of proving our claim also emerges. The fundamental idea is to forget about 
the simplified fractions and rather regard the “minimal” ones. For two equal fractions, if one of 
them has a smaller numerator, then it obviously has a smaller denominator too, because the 
ratios are the same. Thus, we can simply talk about “smaller” and “bigger” versions of equal 
fractions arly, as to ong the equal fractions. If we could 
prove that all other are me al, w ish
minimal one were the single non expanded one and thus it were the simplified one too.  
The proof of why the non minimal fractions are expansions of the minimal again uses a 

heuris . All we need is t a   
b
a  = 

B
A nd  a < A, that is    a

B
A   is a “bigger” version of  

b
a , then  

b  B −
  is again a version of the same fraction value, that is  a A −

b
a  = 

b  B −
.  

But this is obvious, because: 
 
 
 
 
 

a A −
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b
a                   =                      

B
A            /  b ⋅ B⋅  

/  : b  : (B – b) 

                                

                               aB                 =                     Ab            /  – ab 

                         a (B – b)             =               b (A – a)        

b
a                 =                 

bB
aA

−
−  

 

So now, that we see that  
b
a  =  

B
A  = 

bB
aA

−
− ,  we can continue subtracting an other  a  and  b  

from  A  and  B. So, 
b
a   =   

B
A   =  

bB
aA

−
−   =  

b2B
a2A

−
−   =  

b3B
a3A

−
−   =   .  .  . 

Sooner or later, we must end up with either  
b
a   again if  A , B  were multiples of  a , b, or if 

not then with an  
kbB
kaA

−
−   smaller version than  

b
a . Thus, if  

b
a   was the smallest minimal 

version, then this second case is impossible so  
B
A   had to be an expansion.  

As we see, the heart of the argument was that  A – ka  becomes a remainder smaller than  a.  
If we try to use the same argument for grid points P , P’, then a simple repeated sequence of 
subtractions of  P  doesn’t always get closer to  P’  than  | P |! But th t’s okay, because a whole 

 So, the ept of remainder survives! The generalization to two dime
 one dimension not  a < A  whole numbers rather  a < a’ 

a
multiple of  P  is now two dimensional! Then, such multiple of  P  does get closer to  P’  than  
P.  conc nsion is even better 
understood if we use already in  

                                       a                     a 

                          

                                                                           remainder 

remainder here appeared a ted  a  and placed  a’  over it, similarly, a 
mainder of a  P’  point relative to a  P, appears if we “repeat”  P. But now repeating means 

om  corne  of the grid, where  P’ is 
 the  | and they can be regarded as remainder: 

 

                 wo dotted 
                 ainder 

 

 

 

arbitrary distances:  
  
 
 
                                 a’ 
 
  
 
Just as the s we repea
re
using it as a unit for a grid system. Luckily, fr  the four rs
inside, at least two of m will be closer than | P
 
 
 

 
  
  

                         2iP                                                                           the t
                                                                                    P’                  are rem

    iP         P            iP     iP 

                                              O                       P                    2P                   3P 

                                                                                                           

                                                   + iP  2P +         3P + 
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T .) For any point in a plane with a grid system, there is a grid point closer than the unit.  

at: | P’ – WP |  <  | P | 

1
 
2.) For every  P , P’  there is a  W  grid point, so th
 

3.) If  
Q
P   =  

Q'
P'   and  P’ – MP  ≠  0  then  

Q
P   =  

MQ  Q'
M  P' P

−
−   

 

4.) If  
Q
P   is a minimal among some grid ratios, that is, 

there are no  
Q'
P'   grid ratios, so that   

Q'
P'  = 

Q
P   and  | P’ |  <  | P | , 

then all other  
Q'
P'

Q
P  equal grid ratios are expansions of  , that is  

P’ = WP  and  Q’ = WQ 
 

5.) If  
Q
P   is a simplified grid ratio, that is, 

P  and  Q  have no common dividers except the units  1,  – 1 , i , – i  , 

then all other equal grid ratios are expansions of  
Q
P .  

Q
P   being simplified is also called as  P  and  Q  being relative primes.  

’. 

.) A grid point is prime if nothing divides it except the units and it is not a unit itself. 
If  .  .  .    are some primes different from the  .  .  .    primes, 

.  .  .   =  

 
6.) If  P  and  Q  are relative primes, but  P  divides  QP’, then  P  divides  P
 
7

 , P , P 21

then   P  P 21 ⋅
mP ,

  mP ⋅
 , Q , Q 21 mQ ,

.  .  .   ⋅   Q  Q 21 ⋅⋅ mQ ⋅   is impossible.  
 

.) Every  W  grid point can be written as a unique product of primes except their order and 
hanges by multiplying the memb h units.  

 

8
c ers wit

P 1.) , 2.)     Trivial by the picture before the theorem. 
 

3.)                
Q
P                =               

Q'
P'                /  Q ⋅  , Q' ⋅  

                PQ’             =               P’Q              /  – PMQ 

         P  (Q’ – MQ)             =      Q (P’ – MP)         /  : (Q’ – MQ)  ,  : Q 

                         
Q
P               =           

MQ  Q'
MP  P'

−
−          

 
4.)  

t 

By  2.)  there is  W  so that  | P’ – WP |  <  | P |.  

If  P’  were no  WP, then  P’ – WP  ≠  0  and so by  3.), 
MQ  Q'

 P'
−

MP −   were a smaller 

version of  
Q
P  , contradicting that it was m nimal.  

 al.  
 versions, so they are minimal. 

 
 
 

i

5.) By  4.), all grid ratios are either minimal or expansion of a minim
The simplified ones can not be expanded
Thus, 4.)  applies to them. 
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6.) P  dividing  QP’  means that  PQ’ = QP’, that is  
Q
P   =  

Q'
P' . 

Thus, by  5.)  if  P  and  Q  are relative primes, then  P’  =  WP.  
 

7.) ne ivide any  P-s.  
 

  

 

All Q-s  are relative primes to all P-s  but no of the  Q-s  can d

8.) If a  W  have two different forms, then crossing out the identical prime factors, we would
still end up with the impossible situation of  7.). 

 
5. Exponentiation With  i 
 

R of er exponentiation failed to be a 
perfect operation, finally among complex number  thus, any base to any 

pecial cases can be defined.  
nt of a real number and 

We might hope that after the rationals and reals, both  wh e 
s, we can succeed and

exponent, can be meaningful. We are wrong! Here too, only s
First of all, the general exponentiation is easily reduced to the  i  expone
a turned unit:  

i yp ⎥⎦
⎤

⎢⎣
⎡  

i y) α (p ⎥⎦
⎤

⎢⎣
⎡ [ ] i y α  iy x + iy iyx   =  ) α (p) α (p   =  ) α (p   and then  ) α (p  =  

 
Now h tive reals
contr
First of ial way by simply remaining the 
same n 

, we’ll show that these two cases, that is t e  i  exponent of posi  and turned units 
adict each other.  

 all, the turned units could only be defined in a triv
. Indeed, eve for the simplest turn, that is 180  =  – 1: 

2i ⎤⎡ −
i2 ⎤⎡

⎥⎦
  =  1) ( ⎥⎦⎢⎣

−   =  i1  = 1    so   i1) (−  ∈   1  = {1 ,  – 1 } 1) (⎢⎣
i1) (−   =  1   is impossible, because raising both sides to  i  would give: 

 =   =  =  – 1 =    =  1  a contradiction.  
 

o in ed,   =  – 1  can only be. But then this inherits to all turns too: 

2i1) (−i i1) (− 1 1) ( −− i1

 i1) (−S de

i ) α (   =  

i 
180 ) 180 ( ⎥

⎥
⎢
⎢   =  

α ⎤⎡

⎥⎦⎢⎣

180i1) ( ⎥⎦
⎤

⎢⎣
⎡ −   =  [ ]

α 180
 1  −   =  

α

[ ]180
α

18   =  α   0

Even if we accepted this trivial way of defining the  i  exponentiation of turned units, it would 
sible for 

th

make the other half, that is the  i  exponentiation of positive real numbers impos
βxany ing else than the real unit  1. Indeed, let    pix   = α α  =   . Then: 

 
i i β 

α βx ⎥⎦
⎤

⎢⎣
⎡  

β ix ⎥⎦
⎤

⎢⎣
⎡  βx ⎥⎦

⎤
⎢⎣
⎡   i)i(x   =    =  

2ix  = 1 x−
x
1 α βx ⎥⎦

⎤
⎢⎣
⎡   =  αα α  =    =   =   =  

) α  β α (β 2

+  . Thus,     = 0  and so,  = – 1  because  α  β α + β 0  α ≠ . x
 

Then, 
x

  =  x  =  x  and so, x  =  1. 

 

1 2β

Thus, the choice is quite logical! We drop the idea of defining  i  exponents for turned units 
and rather define it for all positive real numbers. 
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ng ecause if the  i  exponent of one  a  
positive real number is unit length, that is  

 
Amazingly, the turned units will be still remaini with us, b

α   then all other  b-s  will become so too. 
Indeed, if m  ia  = α   and  =    =   b = m   then, ib  im ) mi )(a   =  a (a ) α (     = α m . 
So we l number and then, the  
i  exponents of all others are determ ply to choose the  
a  real ber for which  m

 only have to define this  α   for a concrete  a  positive, not  1, rea
ined at once. Or an even better idea is sim

180 num i   is the si plest turned unit, namely  a  =  – 1.  
nd then, for any  b =  ,  = 180  m .  ma ibA

Euler chose this  a  number to be  πe , so he defined  i)π(e  = – 1 .  
The reason for this choice is explained in the following section: 
  
6. Euler’s Formula 
 

R Euler discovered many infinite sums, including the following three: 
a           =          1   +   e

1
a    +   

! 2
a 2

   +   
!3

a 3
   +  .  .     . 

 

cos  a      =          1  –  
! 2

a 2
  +   

! 4
a 4

!6
a 6

!8
a 8

   –      +      –   

 

n  a       =          a  – 

.  .  .

 
! 3

a 3
si   +   

! 5
a 5

   –   
!7

a 7

!9
a 9

   +      –  .  .  . 

lementary derivation of these can be found in the book Infinite Sums) 

 =  – 1   ,    = – i   ,     = 1   ,    = i   ,    = – 1   ,    = – i   ,    = 1   ,    = i   ,  .  .   

hus, if we write in the    sum  i a  in place of  a, then we obtain:  

          =          1   +   

 
(E
 
He also knew that: 
 

2 3i 4i 5i 6i 7i 8i 9ii
 

aeT
 

! 2
a) (i 2

 ae
1
a i    +     +   

!3
a)3

   +  
!4

a) (i 4 (i   +  .  .  .  = 

 

1   +   
1
a  i    –   

! 2
a 2

   –  i 
! 3

a 3
   +  

! 4
a 4

  +  i 
!5

a 5
  –  

!6
a 6

  – i  
!7

a 7
  +  

!8
a 8

  + i 
! 9

a 9
  .  .  .   

 
 
 
As we see, the odd members (marked) give exactly  cos a, while the rest of them  i  multiplied 

n a h

and sin, the  a  argument had to be measured not as angles, but as the 
ircumference of the unit circle. This is also called as the radian. For example,  = 

cos a  +  i sin a  is itself a  P  point, namely a unit with   =  a 

with the members of  si . T us: 
 

                                                    a ie   =  cos a  +  i sin a  
 
In the sums for cos 

o180   c α
corresponds to  a = π   because that’s the length of the half circle.  

α
π

180   turn.  
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                                                                           P 
               i sin

                                                                                     a (radian) 
 

                                                                =  a 

 
 
  
                                 α  
     

   α
π

        π  (radian)  =  o180 α  

180  

                           cos 

 

 

hus,   =    =  cos a  +  i sin a  =  

  
 

 
 
 

π
180a .i)a(e a ieT   

  =  

 

In particular, with  a = π :     πie  = iπ 180 )(e  =  – 1 . 

s From this  ie   can be calculated a ie   =   π) πi(e   =  
1

π
1

) 1 ( 80     =  
π

180  

Then, for any  b = me   base, we can easily calculate the  ib   power too: 
 

ib   =  im )(e   =  i )(e   =  m)  
π

180  (   =  
π

180  m . m

The  m  exponent here is also called the natural logarithm or  ln   b  and   of thus,  

 =  
π

180  bln . i  b  

rom the  i  exponentiation we can easily go to any complex exponent:   

 =     =   ( 

F
 

π
180  )y(bln iyx + iyb   = i)y(b ) 

π
180 lnby  (  xb .

π
180  lnby xb  xb  xb xb  ( b )  =  ) =    

o as we see, in the exponentiation with an  x + iy  complex number, the  x  real part 

termines the angle  

 
S

π
180 bln y : determines the length  b , while the  y  imaginary part dex

 

  
 
                                                                                                                  iyxb +  

                      b 

                               

 
                                                             x + iy 

                                                                            xb  

                                                              

     

              

              

 
 
  

  
π

180 bln y  

 
 
 
 
 
 


