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Part One: Equations

1. Fractions

1)

2)

3)

d)

A fraction remains the same if its numerator and denominator are multiplied with the
same number. We call this an expansion of the fraction:

% = %,here we multiplied with 2, that is expanded % with 2.
% = g,here we multiplied with 3, that is expanded % with 3.

The reverse of expansion is simplification:
6 _ 3

20 10°
Sometimes we merely cross out the old numerator and denominator and write the new ones

above and under:

here we simplified % with 2.

3
Pt

20

10

If we don’t multiply or divide both the numerator and the denominator, only one of them,
then of course the fraction value changes, namely:
Multiplying the numerator increases, multiplying the denominator decreases the value.
Dividing the numerator decreases, dividing the denominator increases the value:

% becomes double by changing it to % . % becomes half by changing it to % .

% becomes half by changing it to % . % becomes double by changing it to % .

This can give many variations of how to increase or decrease a fraction. Even more when
increase and decrease are done at the same time. Luckily, all these can be combined into the
following five rules of fraction multiplications and divisions:

Multiplying fractions can be done by top with top, bottom with bottom:

2.4 _ 8

3 9 27

Dividing fractions can be replaced by multiplying, if the second is turned upside down:
2.4 _2 9 _18

3°9 3 4 12

Before we perform the top with top, bottom with bottom multiplications, we should
check for simplifying but including all numerators and denominators:

% . g = % was correct because the top 2 and 4 can not be simplified with any of the 3
or 9. But:
3
2.2 =3 Aswe see, we didn’t write the 1 above the 2 and under the 3.
3 } 2
7~ 2
This is an accepted abbreviation. By the way, if one misses the simplification, the result is
still good. Indeed, % - %,the left can be simplified with 6.
Whole numbers are merely fractions with 1 denominators: % - 10 = % . % = %
This of course, should be done at once without writing it out and rather remembering:
210 = 20
3 37
The fraction “of”” an amount is merely an other way of saying the multiplication:
“Two thirds of ten” means 2 - 10 = E.

3 3



5)

6.)

.

Adding or subtracting fractions can not be done as mechanically as multiplications.
The only obvious situation is when the denominators are the same:

2 01 _ 2+1 _ 3 _ 2 1 _2-1 _1

O T B S S S B &

All other additions or subtractions must be done by this rule, that is we have to achieve
common denominators. Luckily, this is easy with proper expansions!

To find the common denominator we should start with the largest denominator.

If all others divide this, then it can be used:

% + % + % = ? The largest denominator is 12.
3 and 4 both divide it, so 12 can be used as common denominator:
3 4 12 12 12 12°

The ? values can be obtained by seeing how much expansion was done.

From 3 to 12, the expansion was 4 times, so 2 also must be multiplied with this.

From 4 to 12, the expansion was 3 times, so 3 also must be multiplied with this. So:
2,3,5_8,9,5 _2_1

3 4 12 12 12 12 12 6

If the largest denominator is not “good”, that is the others don’t divide it, then we have to try
the double, triple, and so on. Sooner or later, we’ll succeed.

8 5 - 9 9 isthe bigger one, but 6 doesn’t divide it. 2-9 = 18, already works,

9 6
i ded .8 5 _ 2? ?
because 6 divides it. So: 06 TS
The ? values can be obtained again as the expanded numerators.
9 - 18 was doubling, so 8 must be doubled too.
6 —> 18 was tripling, so 5 must be tripled too. So, finally:
8 _ S _16 15 _ 1
9

6 18 18 18"

Whole numbers can be added and subtracted easily as fractions with 1 denominator:

1,2 1,2 ,2 ?7,? . ? 3,4 12 19

4+ S 4+2 = 45 4+5 =4 =4 - 2= =

2 3 2 3 1 6 6 6 6 6 6 6

If only two members are, and one is a whole, then the situation is always just using the
denominator and multiplying the whole with that:

3 3 1 3 3 3 3 3

An old fashioned notation of adding a whole number is the so called, mix number.

This contains a bigger written whole number and a fraction part:

72 _ 5 2 6 , 2 _

3 373 + 3" % As we see, we can get it at once by remembering:

2 \% , here the line means that they must be multiplied and then added to the top.

If a fraction has bigger numerator than denominator, it can be changed to such mix number
easily, by checking how many times the denominator fits into the numerator and what
remains: % = 3é,because 12 wentinto 37,3 times and 3-12 =36,s0 1 remained.
Mix numbers are only used for giving initial or final values.

For calculations we always must use fraction form!



2. Brackets

1)

2))

3.)

4)

5)

The agreed order of calculations is that times and division are carried out before additions:
5+3-2 =5+6 = 11. Some calculators obey this rule, but some can’t. So with those, we
have to start entering the multiplication.
If we want to specify our own order of calculations, we can use brackets:
2+3)+[53B+5)] =5+[5-8] = 5+40 = 45.
As we see, the (2 +3) bracket and the [ | bracket was unnecessary. Sometimes we still use
such brackets just to express the groups. The (3 +5) bracketing was vital though! Without
it, 5-3 +5 = 20 had beenin [ ]. As we also see, 5 ( ) was used without the multiplication
dot, because it was obvious what to do.
Multiplying a bracket sum can be done member by member too:
5@3+5)=5-3+5-5=15+25 = 40. Which indeed, is the same as 5-8 =40.
If there are letters, the same happens: 5 (x +5) = 5-x + 5.5 = 5x+25.
The signs must be multiplied first:

4+

Vool

-5(x-5) = — 5x + 25.Aswesee, the x after the opening bracket was regarded as +.
Indeed, in the beginning of lines or after opening brackets or equation signs, we omit +.
If there are more letters, we should multiply them in alphabetical order!
Multiplying a number by itself can be abbreviated as squares and cubes, and so on, with other
exponent: X X = x’ , XXX = x’ , .

S —+ —

\J \J \X
3—5ax(—2x+ax—b) = 3 + 10ax> — 5a’x’ + Sabx.
When two bracket sums are multiplied, we have to multiply every member of one bracket
with every member of the other:

(3x—5+ab)(-2ax+1) = — 6ax> + 3x+10ax — 5 — 2a’bx + ab
\/

The two lines showed how we multiplied 3x with both members of the second bracket.
Similarly, we went through with — 5 and then with ab.

After a lot of multiplications we have to combine the numbers and sum letter products to
shorten the result:

3+Bax—a—1)(x—-3x"+1) = 3+3ax’ —9ax’ +3ax—ax+3ax’ —a—x+3x" -1 =

=2+6ax’ —9ax’ +2ax—a—x+3x".

3—1 gave 2,and 3ax” +3ax’ gave 6ax’,and finally 3ax —ax gave 2ax.

The reverse of multiplication is called factorization and it is much harder.

For example, above giving the final result, nobody would be able to figure out the original
form. A special case is quite simple though, namely when we only take out a single non
bracketed factor:

6a’x’b + 9a’x — 3a’xyb = 2.

For the numbers, the common divider is 3.

a appears in all members, namely twice or rather as square or second power, a’ = aa.

x also appears in all, but in the last two members only as itself, that is first power.

So, 3a’x can be taken out and thus ? =3a’x (2bx + 3 — aby).

As we see, the example was not given in alphabetical orders, but we strived for this.

Three special bracket products are very important:

(a+b)> = (a+b)(a+b) = a’*+ab+ab+b> = a®> +2ab+b’.

(a-b)> = (a—-b)(a-b) = a>—ab—ab+b*> = a> —2ab+ b’.

(a+tb)(a—b) = a> —ab+ab— b’ = a> - b’
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A special application of the previous three special rules themselves, is to change an

x* + % X expression into one with a single appearance of x. Here, % is a fraction.

For example, x° + % X = ? Obviously, x> and x can not be combined, so to find an

expression with a single x, would be quite surprising and very useful later for equations. The

idea is that x is regarded as “a” and the half of %,that is L. as “b” inthe

3 b
(a+b)*> = a’+2ab+ b’ formula. Indeed, then:

1Y _ s 1 (qz_ ) [qz
= = +2x= + =] = + £x + | =] .
(x+3) X 2x3 3 X 3x 3

2
Then just subtracting (%) from both sides, we indeed obtained x° + % X as:

3 3

If the fraction is negative, we simply use negative in the bracket too, but the fraction square
is always negative. Sometimes the halving of the fraction must be done by the denominator:

2 2
xz—%x =9 Thehalfof% is %,so: xz—%x = (x—%) —(%) .

Interestingly, our final results can be verified by using the a’ — b> = (a+b) (a—b) third
rule form above too. Indeed,

2 2
(x+l) — (lJ = (X+l+l) (x+l—l) = (x+g)x = x2+2x or
3 3 3 3 3 3 3 3
_343) (x=323) = _6) = _3)= x2l3
(x-343) (x-3-3) = x(x-8) = x (x-3) = x* 34

2 2
(x + l) — (lj , and so with one appearance of the x letter.

/TN

>

|
0 |2
N
|39

\
/N
0 |2
N—
N~

I
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3. One Variable First Order Equation

One variable means that only one letter appears and we will use x.
First order means that x will only be multiplied with numbers, but not with itself and thus, x°,

x’ or higher powers can not appear.

The basic rule is to keep an equation in balance!

If we just change a side to an other form, that doesn’t affect the balance. A special case of such
change is when we combine different members on the sides.

If we add, subtract, multiply or do anything to one side, then the other must be altered the same
way. What balancings we use, is up to us! Our goal is to express x with numbers!

The first step of course, is to change all mix numbers to fractions.

The second, is to get rid of all the numbers from the left, and all the x-s from the right.

This can be achieved by subtracting them or adding, if they were negatives:

1 1.0 — 2, 11

22 S X 1 3X 13 /change
> Ly gy = 2y 4 / 24 -2y
2 2 3 3 2 3

These three changes must be done to both sides!

On the left, % disappears, — %x remains, — 1 disappears and — %x will appear.

Instead of writing the — %X and — %X separately, we’ll take out the common x and write it as,

49

On the right side, the %x disappears, — % remains and — % and + 1 will appear. So:
(_1_;)X 4 5,
2 3 3 2
We should combine the numbers, but for this, first we have to use common denominators:
1 2 4 5
- - = = - =X - =2 + 1 .d.
( 2 3) : 3 2 [ cd
3 4 8 15 6 .
—_—— — — = J— —_— J— — + —_—
( < 6) X 6 ¢ 6 / combine
_7 - _ 1
6" 6

We are almost finished to get x, except —% multiplies it.

To get rid of it, we’ll have to divide both sides wit —%

7 = - -
I : /

oNIEN

17,
o

X = —

7,17 6 17 _ 17 _,3
6 6 7 % 7 7 7

Now lets use the five steps again through an other example:



%—x— 13 = 2%){—1 /change
S R A B
(_1_%))( = 717% +% [ cd
(_%_%)X = % _% +% /comblne
7, _ 1 [ -1

6

S TR _ s
3 2 4 2 T4
2 1 7 5
2 41 _ 7 - _ 5 d.
L) 4 84 [ cd
36 2 147 — S5 &4 :
84 84 84 g4 84 /" combine

_ 8 - _ 8

84 84

Thus, our solution was correct.

Of course, we could aim for expressing x in the opposite way, that is having it on the right side
and all the numbers on the left. Sometimes the original equation has x only on the right side, and
then we save a few steps by proceeding this way.



4. The “Hyper Drill”

This is not a mining equipment, rather a type of exercise that has infinite many variations and
perfects the usage of the Descartes coordinate system and the solving of equations at the same
time. In the Descartes system, the points of the plane are located by the x and y coordinates.
These can be obtained by simply drawing perpendiculars to the x , y number lines:

4 ®P=(x,y)

The agreement is that on x, the plus values are on the right, while on y, they are upwards.

The real goal of Descartes was to combine geometry with algebra. And indeed, instead of just
single points, we can regard lines, circle, and so on. These of course, contain infinite many points.
So, they could only be given as sets of points. But how to give a whole set?

If we can find an equation containing x and vy, so that it is only true for the points of our
geometrical shape, then the equation itself is actually a set of all those x,y values, that satisfy it.
But even better is the fact, that if two shapes like a line and a circle cross each other, then the
crossing points are satisfying both equations. So calculating the common solutions is actually
giving the crossing points. Thus, algebra can solve geometrical problems. And also in reverse,
algebraic solutions can be looked and checked by the pictures.

The “hyper drill” calculates the crossing of two lines!

The equations of lines can be best givenas y=sx + h.

Here, s is the slope and h is the crossing of the y line.

The slope means what we use in street signs too. Instead of angles, it gives the dangerously steep
road’s slope as a percentage, like 13%. This means that the elevation, that is the increasing of y,
is 13% of the travel forward. This is still, a little bit ambiguous, because the “forward” could
mean the actual upwards travel on the road or the really straight forward distance in an imaginary
line inside the road:

real forward y change

imaginary forward = x change

As we see, the imaginary change is easier for us, because it is exactly the x change.
y change

So, slope = ——— or ychange = xchange - slope. For example:
x change
.2 . : : 2 _ 200 _
If the slope is 3 and we go forward 100 in x, then y will change: 100-§ =5 = 66.6
66.6 = 100-2
3
100

The real beauty of this concept is that it can be easily generalized for negative values.
Negative slope means dropping, that is decreasing y, when x goes forward to the right.
But even if we use negative x change, that is going backwards, the rule remains the same:
y change = x change - slope.
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If for example, the x change is negative, and the slope was also negative, then this will give a
positive y change, which indeed it should be:

y change
negative slope

x change

So we don’t have to worry about the signs, they will always come out correct by the
multiplications.

Since x is measured from the center y line, it’s logical to start with h height at here.

So the h initial height of a line is actually the y-crossing ofit:

h

/

Then the y value, that is the height, at an x distance can be calculated from this initial height and
the y change, which is the x change - slope:

/

S X

y=sX+hf----mmmmmmmmmomoooos 7

h

X

Again, if h is negative, everything still works out!

Now we only have to give two lines, and then find their common x ,y values.

But we won’t give the two lines as equations directly, rather give them geometrically.

The simplest way is by two points, for each line. From these points, we’ll write the equations
ourselves. All we have to do is find out the s slopes and the h y-crossings.

The first is easy because the differences of the y and x coordinates of the points give at once the
6-3 _ 3.

slope: For example, if two points are (2, 3) and (6, 6), then the slope is 6> 1

By the way, the coordinate differences are much easier to see if we draw a triangle as above.
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For the y crossing we have to choose one of the points, namely the closer one to the y line!
Then move towards the y line, and simply add to the y coordinate of the chosen point the
move-slope value, with the already obtained slope:

3 was the y coordinate, that is the height of the closer point to the y-line.

From this point, a —2 move took us onto the y-line exactly to 3.

This move is always the opposite of the x coordinate of the closer point.

Indeed, if it were on the other side of the y-line, it were negative, but the move is positive.
The change from the height 3 of the closer point can be obtained as the x change-slope.

In our case it was: — 2%.

Now the equation is easy: y = %x + %

If we repeat the same for an other line, then we get two:

y=... and y=... equations.

Then of course, the two right sides must be equal for common (x , y) points, so we get a single
equation for x. That can be solved and then get y too, from any of the above equations.

By the way, it is better to put the more complicated right side equations on the left.

The following pages each contain a full example:
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Lets start with he “left” line! On the triangle the y sideis 1, the x sideis 2.
The line itself goes up, so the slope will be positive.
1

1 =1
slope 5

Both points are 1 distanced from the y-line so we could choose either of them, but we choose the
left, because it’s easier since then the move is positive. This point’s height is 1, so:
2 .1 3 1
— 1_

y-cross=1+l-% = E+E =5 -1

. 1 3
tioniy = —~ x + 2
equation:y = 5 X + 3

The other line goes downward, so its slope is negative:
slope = —% = -2

y-cross = 1-3--2 =1+3.2 =7

equation: y = —2x + 7

Making an equation from the right sides:

1 3 3
L x +2 = — + _ 2 4
> X > 2 X 7 / > 2 X
(%+2)x = 7 - % / cd
(%+%) X = %— % / combine
S - 11 S
2 X 2 / 2
11 5 11 2 11 1
= — — = — G — = — = 2_
R T T N 5
5 5 5 5 5
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|

slope =

N

y-Cross = = 1 The point is on the y line already.

3
2

_0-
equation: y = % x +1

1

slope = 1" -1
y-cross = 0—2-—1 =2
equation: y = —x + 2
%X'i‘l = -x + 2 /-1 +x
[§+1) x = 2 -1 [ cad.
2
[§+2) X = 2 -1 / combine
2 2

5 5

= = 1 [ :2

2 " 2

2 5 5

<

I

\
()
_|_
)

I

\
(A1)
_l’_
—_

I
[V 3

I

[e—
[V[¥)
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1
1 =1
slope 5
y-cross=3—2-l 52 _13_5,3
5 5 5 5 5
equation: y = 1y 13
5 5
3
1 - 2
slope >
3 4 3 7 1
y-Cross 5 573 5 5
. 3 7
tion: y = 2 £
equation: y 2x 5
1 13 3 7 13 3
5575 272 / 5 2%
1.3 7113 | ed
(5 2]" 2 5 ¢
215 _ 3526 /| combi
(10 10) 10~ 10 comblhie
B | [ . 13
10 10 10
10 1 1 13 13 13
y—3.61 7 _ 183 7 _ 18 91 _ 92 _46 _ 37
2 13 2 26 2 26 26 26 13 13
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5. Word Problems

1.) Two numbers are 99 together. What are they if:
a.) One is 7 bigger than the other.
b.) One is twice of the other.
c.) One is 15 smaller than the other.
d.) One is one tenth of the other.
e.) Adding 1 to the smaller, it becomes exactly one ninth of the other.

f.) Adding 1 to the smaller, and subtracting 1 from the bigger,
the bigger becomes double of the smaller.

g.) Adding 2 to the smaller and subtracting 2 from the bigger,
one becomes double of the other.

h.) One of them is odd and is almost half of the other.
The difference of the two is almost 40.

Solutions:
a.) Let the smaller number be x. Then the bigger is x + 7.
Their sum is 99, so:

X + x+7 = 99 / combine, — 7
2x - 9 [
X = 46

So this is the smaller number, and the bigger is 46 + 7 = 53.
They are correct because their sum 46 + 53 is indeed 99.

b.) Let the smaller number be x. Then the bigger is 2x.
Their sum is 99, so:

X + 2x = 99 / combine
3x = 99 / :3
X = 33

So this is the smaller number, and the biggeris 2-33 = 66.
They are correct because their sum 33 + 66 is indeed 99.

c.) Let the smaller number be x. Then the bigger is x + 15.
Their sum is 99, so:

X + x+15 = 99 / combine, — 15
2x - 84 [ :2
X = 42

So this is the smaller number, and the bigger is 42 + 15 = 57.
They are correct because their sum 42 + 57 is indeed 99.



d)

£)

g)
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Let the smaller number be x. Then the bigger is 10x.
Their sum is 99, so:

x + 10x = 99 / combine
11x = 99 / 11
X = 9

So this is the smaller number, and the biggeris 10-9 =90
They are correct because their sum 9 + 90 is indeed 99.

Let the smaller number be x. Then the biggeris 9 (x + 1)
Their sum is 99, so:

x + 9x+1) = 99 / change
Xx+9%+9 = 99 / combine, — 9
10x - 90 / 10
X = 9

So this is the smaller number, and the biggeris 9 (9+1) = 9-10 = 90.

They are correct because their sum 9 + 90 is indeed 99.

Let the smaller number be x. Then the bigger is 99 —x
Adding 1 to the smaller makes it x + 1.

Subtracting 1 from the bigger makes it 99 —x — 1.
This is the double of the first, so:

2(x+1) = 99-x-1 / change, combine
2% + 2 = o8-x [ -2 +x
3x = 9 [ :3
X = 32

So this is the smaller number, and the bigger is 99 — 32 = 67.

They are correct because 67 —1 = 66 is indeed, double of 32 +1 = 33.

Let the smaller number be x. Then the bigger is 99 —x.
Adding 2 to the smaller makes it x + 2.

Subtracting 2 from the bigger makes it 99 —x — 2.

We only know that one is double of the other, so either:

2(x+2) = 9-x-2 or
2(99-x-2) = x+2 / change
198-2x-4 = x+2 | combine +2x
194 = x+2+2x / combine — 2
192 = 3x [ :3
64 = X

This should be the smaller number. Then the bigger number should be

99 — 64 = 35. But it became smaller, so this solution is false.
Thus, using the other possibility:
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2(x+2) = 99-x-2 / change, combine
2x + 4 - 97 -x [ —a+x

3x = %3 [ :3

X = 31

This is the smaller number. Then the bigger is 99 — 31 = 68.
They are correct because 68 —2 = 66 is indeed double of 31 + 2 =33.

Let the smaller number be x. Then the bigger is 99 — x.
The “almost half” is not quite exact, but definitely means less than half.
Obviously, only the smaller can be less than half of the bigger, so:

99 —x )
X < 7 / 2
2x < 99 —x / + X
3x < 99 / :3
X < 33

The difference of the two numbers can obviously be obtained by subtracting the
smaller, that is x from the bigger, that is from 99 —x. So itis: 99 — x —x.
This being “almost” 40, can again be used as smaller than 40, so:

9_x —x < 40 | combine — 99
_x < ~59 /[ -2

X > _59:-2 =+295

X > 30

At the division with — 2 the inequality had to be turned around! Indeed, any sign
change causes this! For example: 1 <2 but, —1>-2

The > symbol means larger or equal and among whole numbers x > 29.5 clearly
means that x > 30.

This and the previously obtained x <33 together mean that x =30 or 31 or 32.
Since x was odd, it must be 31. Then the bigger number is 99 —31 = 68.

31 is indeed, “almost” half of 68, and their difference 37, is “almost” 40.
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2)) A family consists of a father, a mother, a son and a daughter. How old are they if:

a.)

b.)

d)

Solutions:

a.)

The sum of all their ages is 100 years.

The father is three times as old as the son.

The mother is three times as old as the daughter.

20 years ago, the mother was the same age as the daughter is now.

The sum of the parent’s ages is four times as the sum of the children’s.

When the daughter was born, it was ten times.

18 years from now, the father will be twice as the son will be, and the mother will
be twice as the daughter will be.

The sum of the parent’s ages is 100 years.

The father is three times as old as the son.

The difference of the children’s age is 10 years.
The mother is as old as the children together.

20 years from now, the son will be the same age as the mother is today and the
sum of their ages will be 100.

The father is older than the mother, but less than six times the daughter.

8 years ago the family consisted of only three members.

Let the age of the daughter be x. Then the mother is 3x.
But since 20 years ago she was X, today she is also x + 20. So:

x +20 / -X

3x =
2x - 20 [ :2
X = 10

This is the daughter’s age and so the motheris 3-10 or 10+ 20 both = 30.
The mother and the daughter together are 30 + 10 = 40.

So the father and the son together are 100 — 40 = 60.

Let now the son’s age be x. Then the father is 3x, so:

60 / combine

X + 3x =
4x = 60 /| :4
X = 15

This is the son’s age and the fatheris 3-15 =45.
This is correct because 45 + 15 = 60.
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Let the sum of the children’s ages be x. Then the sum of the parent’s is 4x.

18 years from now, everybody’s age will be 18 more, so both the sum of the
children and the parents will be 36 more, thatis x + 36 and 4x + 36.

Since the parents will be each twice as one of the children, their sum will be also
twice as the sum of the children’s:

4x + 36 = 2 (x+36) / change
4x +36 - 2x + 72 [ —2x-36
2x - 36 / :2
X = 18

This is the children’s sum and the parent’s is 4-18 =72.
Now let the age of the daughter be x. Then the sonis 18 —x.

When the daughter was born the “children” only consisted the son.

Since the daughter is x today, this was x years ago and so, the son was x years
younger, that is 18 —x —x = 18 — 2x. This was the sum of the “children”.

The parents were also x years less each, so their sum was 72 — 2x.

This was ten times as the sum of the “children”. So:

72 —2x = 10 (18 —2x) / change
72— 2x - 180-20x /[ —72+20x
18x - 108 / :18

X = 6

This is the daughter and so the sonis 18 —6=12.

18 years from now the son will be 12 + 18 = 30, the father twice, that is 60.

And so he is today, 60 — 18 = 42.

18 years from now the daughter will be 6 + 18 = 24, the mother twice, that is 48.
And so she is today, 48 — 18 = 30.

Let the age of the son be x. Then the father is 3x and the mother 100 — 3x.

Since the mother’s age is the sum of the children’s, thus the daughter’s age is the
mother’s minus the son’s, that is 100 —3x —x = 100 —4x.

Since the children have 10 years difference in their age, thus either:

100 - 4x —x = 10 or
x—(100—4x) = 10/ change
x — 100 + 4x = 10 / combine + 100
5x - 1o/ :s
X = 22

This is the son and then the daughter is 100 — 4-22 = 12.

The father is 3-22 =66 and the mother 100 — 66 = 34.

This is a pretty big age difference, but not that impossible.

The mother’s age is indeed, the sum of the children 12 + 22 =24.
But this would mean that when the son was born, she was 12.
That’s more than unusual, so lets try the first possibility.
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100 — 4x —x - 10/ combine— 100
_5x - 90 [ :-5
X = 18

This is the son and then the daughter is 100 — 4-18 = 28.

The father is 3-18 =54 and the mother 100 — 54 = 46.

The mother’s age is indeed, the sum of the children 18 + 28 = 46.
We must regard this as the solution.

Let the age of the son be x. Then 20 years from now, he will be x + 20.
This is the mother now and she will be 20 more, thatis x + 20 + 20 = x + 40.
Their total will be 100, so:

x+20 + x+40 = 100 | combine — 20— 40
2x = 40 / :2
X = 20

This is the son and so the mother is 20 + 20 = 40 and indeed, in 20 years they
will be together 40 + 60 = 100.
Now let the daughter be x.
Eight years ago the son was 20 — 8 = 12 years old, so well alive and thus, the
daughter had to be the missing member. In other words, she is less than eight.

x < 8
Since the father is older than the mother, but less than six times the daughter, thus
the mother is also less than six times the daughter. So:

40 < 6x /| :6

6.6 < x
x < 8 and x > 6.6 together mean that x = 7. Thus, the daughter is 7.
The father must be more than 40, but less than 6-7 =42. So he is 41.
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6. More Variables

As we saw, in our previous word problems, even when they were asking for more unknowns,

we could succeed with using only one variable equations successively.

Sometimes however, even if there is one unknown only, we might have to use more variables.
For example:

Two cities are 126 km apart on the bank of a straight river. A steam boat travels down the
river in 7 hours from one city to the other, while it needs 9 hours to travel upstream.

What is the speed of the river?

Solution:

Let the speed of the river be x and the speed of the steam boat in still water be y.
Then the boat’s speed down is y + x, while upstream is y — x.

Thus, under 7 hours down stream, the traveled distance is 7 (y + X).

While under 9 hours upstream, the traveled distance is 9 (y — x).

Thus:

T7(y+x) = 126
9(y—x) = 126
Dividing the first equation with 7 and the second with 9, we’ll get:
y+tx = 18
y—-x = 14
Subtracting the second equation from the first:
(y*+x) — (y—-x) =18-14 / Comb.

2x = 4 /2

X = 2

We could have argued as follows too:
The speed of the boat down stream is % = 18 km/h, up stream % = 14 km/h.

The difference in speed is 18 — 14 = 4 km/h, which is twice the river’s speed.
But this argument is a bit over complicated and it was much simpler to get rid of the y variable.
Such elimination of variables can always easily lead us to the solutions.
There are two ways to this. Either by multiplying one of the equations with a number and then
adding or subtracting with the other or, by expressing the variable by the others.
For example in:
2x—-%y = 3
Xty = 7
If we multiply the second by 2, it becomes, 2x + 2y = 14, then subtracting the first from this:
2y +5y = 14-3

Ty = 11
1 _ 4
7 7

y =

Then to get x, we can put y’s value into one of the original equations and solve it for x.
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With the other method of “expressing”, the solution could be as follows:
From the second equation, subtracting x from both sides gives: y =7 —x
Writing this into the first: 2x-5(7-x) = 3
2x-35+5x = 3
7 x = 38
L _38_s3
7 7
_ _ 3_4,4
Then,y = 7—-x =7 57 17.
As we see, “expressing” is a bit more complicated at the beginning, but it gives the other
unknowns successively backwards. So in average, both elimination methods require the same

amount of calculations.

Sometimes however, we can succeed with some unexpected tricks much easier:

1) x+ty=a
ytz=">
Xtz =c¢

Here a, b, ¢ are any given numbers but we can find an easy solution for all such possible
numbers as follows: Lets add together all three equations:

2x +2y+2z =a+b+c /:2

a+b+c

+y+z =
Xt+ty+tz >

Subtracting each equation from this we get at once each unknown.

, = atb+c . _ a+b+c 2a _ b+c-a
2 2 2 2
X = a+b+c b = a+b+c 2b _ a+c-—b
2 2 2 2
y = a+b+c e = a+b+c 2c _ a+b-c
2 2 2 2
2) xy=a
yz=>b
XZ =2¢C

Here we should multiply all three equations together to get:
x> y*> z> =abc /\/_

xyz = <abc Dividing this with each equation, we get each unknown:

_ vabc _ [abc _ /bc
z = = = =
a a

_ J|abc _ J|ac
\ b2 b

abc ab

y: = =
c c? c

[
@qm
(@)

)
(on
o




3.)

4.)
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x(y+z) =a > xy+xz
y(x+z) =b 2> yx+yz
z(xt+ty)=c¢c > zx+zy =

Regarding xy, xz and yz as new unknowns we can use 1.) to find them as:
Xy = A

yz = B

xz = C Then we canuse 2.) to find x,y, z.

Xtyt+txy = a

y+z+yz=>b

X+tz+xz =¢

Lets add 1 to each equation.

xty+xy+1l =x+1D(y+1)=a+1l
ytz+tyz+1=(y+1)(z+1)=b+1

xtz+xz+1 =x+1)(z+1) =c+1

Multiplying them all: (x+1)> (y+1)* (z+1)*> = (a+1)(b+1)(c+1)

Thus, x+ 1) (y+1)(z+1) = \/(a +1)(b+1)(c+1) dividing this with each:

Lep = N@rDODEe+) _ [b+D (et
a+l1 a+l

g1 = Ja+D)b+De+l)  [@+D(c+])
b+l b+1

el - Ja+D)b+D e+ _ [@+)(b+1)
c+1 c+l
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7. Linear Equation System and Determinants

Linear means the same as first order, that is that the variables are only multiplied with
numbers, but not with each other or themselves.

Soif x’, y* or xy appear in an equation, then it is not linear or first order.

2x = 345y

y—-x =7

is a linear equation system, because both x and y are only multiplied with numbers.

A more organized form of the above system is:

2x—-5y = 3

-xty =7

because the same variables all appear under each other, and the numbers without variables are
all appearing on the right side. Even if a variable doesn’t appear in an equation, we can use 0
to keep the general form. For example:

-x + 3y + 0z = -2
2x — y + 5z = 3
0x + y + 2z = 0

So the multipliers of the variables can be given as the table:

-1 3 0
2 -1 5
0 1 2

Such table is called a matrix.

This uniform writing of the linear equation system suggests the question, whether there is an
instant way to calculate all unknowns without the complicated eliminating methods of the
variables.

There is such method, what’s more for any number of unknowns. To introduce this we have to
use a,b,c, . . . variables for the normally given data numbers too.

So, X,y, . . .,z are our alphabetical variables for the unknowns, while a, b, . . ., e for the
given numbers. In our English alphabet, z comes after y, but here, we assume that z is the
last unknown. We can imagine other letters between y and z, for example, y,, y,, . . .

Also, e is the last alphabetical variable for our data. Think of e = “end”.

Between b and e, there can be as many variables as we want, but usually we’ll use ¢ for any
of these. This will make sense for a ¢ = “column” meaning too.

On the other hand, for the numbers that stand on the right side of the equations, we’ll always
use the r letters which will make sense, not only as r = “right”, but as r = “replacement”.

1.) An n-square matrix isan n by n table of numbers.

We’ll usually place them in round brackets and denote them column by column with

alphabetical letters a,b, . . .,c, . . ., e and row by row with subscripts.
a, b ¢
a, b, €,
an bn en
2.) An n-order is an ordering of the 1,2,3, . . . ,n numbers.

For example, a 4-order is 3,1, 2, 4.



b.)

The

b.)

b.)

The pick by an n-order 1, ], .
For example, the pick by the 4-order 3,1,2,4 is a,, b,, c,, d,.
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The pick product is the product of the pick.

An assignment is assigning + or — to each n-order.
The determinant of an n-square matrix with a chosen assignment is the sum of all
pick products, with the assigned signs.
We denote this sum by changing the round bracket of the matrix to straight.

Decomposition
By the i-th row:

S S P =

. .0 .
0 0 0 b, 00
+ +
0
0
c, 0 .. 0 .
0o . 0 0 c, 0
+ +
0 . 0
0 . 0

. . from a matrix, is a;, b;, . . .

.0
000 e
0
0
0 0 c, 0

0 places can contain any numbers. The dots are the unchanged members.

Multiplying
By the i-th row:
a, b, . ¢
X
a, b, . e,

By the ¢ column:

a, b, e,
X

a n b.n € n
Splitting

By the i-th row:

By the ¢ column:
c, +¢,

Cc, +¢C,

Xa

xb, . xe,.
XC,
XC,
XC,
— al bl ei + al bl
C ¢
c c
2 + 2
Cn Cn

ol .
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1.) a.) The first member gives all the pick products containing a, .
The second member, the pick products containing b,. And so on.
b.) The first member gives all the pick products containing c,.

The second member, the pick products containing c,. And so on.
2.),3.) Gosimilarly as 1.)

The alternating assignment is obtained as follows:

In each n-order we’ll give a sign to each member and the total product of these signs will be
the one assigned to the whole order.

The first member has the signby: +1 , -2 , +3 , -4 , +5 , ...

For example, if the first member is the second, its sign is —.

Then we take out this member and again alternate therest: +1 , -3 , +4 , -5, ...
This will tell the sign of the second member. Then we take that out again and re-alternate the
remaining numbers. And so on. Of course, the last remaining number is always +, so we don’t
have to bother about that, when we multiply all the signs together.

For example, the alternating assignment for 2,4,1,5,3 = — + + — = +

From now on we use this alternating assignment for all orders and determinants.

1.) Changing two neighbouring members in an n-order, the sign changes to opposite.

2.) Changing any two members is also changes the sign to opposite.

3.) Exchanging two columns or rows makes the determinant change sign.
(Unless it was 0, and thus didn’t have a sign at all.)

4.) Iftwo columns or rows are the same, then the determinant is 0.

5.) Adding a column to an other doesn’t change the value of the determinant.
(Similarly for rows.)

6.) Ifacolumn is the same as the sum of other columns, or their multiplied variants, then
the value of the determinant is 0. (Similarly for rows.)

1.) The signs given to all other members than the two exchanged remain the same.

The smaller of the two neighbourings remain the same too after the exchange, but the
bigger one changes. Thus, all together only one sign changes.

2.) Every change of two members can be obtained by successive neighbouring changes, as
follows: First, we move one member next to the other. Then, use one single neighbouring
exchange. And thirdly, we move the exchanged member back to the position of the other.
The back and forth movements are the same many neighbouring exchanges, so together
are even many. Plus the single exchange makes the total odd. And thus, the sign opposite.

3.) By 2.) all pick products become opposite and thus the total too.

4.) Suppose that the determinant were not 0, but had a sign.

Exchanging the identical columns or rows keeps the determinant identical too.
By 3.), if it had a sign, it couldn’t be identical, but were opposite in sign.

5.) By first T 3.) we can split the new determinant into the original and one with repeated
columns. But then this second member is 0 by 4.).

6.) By 5.), the sum of any number of columns can be replaced into one of the added columns.
(With keeping the same value of the determinant.)

If one column is a sum of others, then the sum can be replaced into one of the members
and thus, obtain a same value determinant with two equal columns. But by 4.) thisis 0.
If one column is the sum of not others, but only some multiple variants of them, then first
we can multiply the columns, which changes the value of the determinant with the
multipliers. But still this leads to a 0 value, and thus the original had to be 0 too.
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Letsusean | | “replacement” column, that we exchange with each column of an original

r

matrix which had a D determinant value. The obtained new determinants are denoted as
D,,D,,...,D, according to which column is replaced. Then:

a, D, + b, D, +...+¢e D, =1D

We’ll only show it for i = 1. The general case can be seen similarly or we can replace the i-th
row with the first in all determinants and thus, change the sign on both sides.

r, b, € a, T € a, b I, a, b €
a, + b, + . + e, =,
rn bn en an rn en an bn rn an bn en
| I | I
a;r, ab, a,€; ba, br be, ea, eb, S ra, b, re,
+ ++ =
rn bn en an rn en an bn rn an bn
I | I |
ar, 0 0 0 ba, 0 0 O ea, 0 0 O ra, 0 0 O
0 0 0
+ SR =
0 0 0 0
0 0 0 0
+ + + +
0 ab, 0 0 0 br, 0 0 0 eb, 00 0 rrb, 0 O
0 0 0 0
+ - =
0 0 0 0
0 0 0 0
+ + + +
+ + + +
0 0 0 ape, 0 0 0 b, 0 0 0 e 0 0 0 re,
0 0 0. 0
+ - =
0 0 0 0
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The diagonally positioned determinants on the left are the same as the right.
The other members on the left cancel each other if paired by the mirrored position to the
diagonal ones. Indeed, each pair can be obtained with a column exchange. Thus, are opposite.

a,x + by + ...+ ez = g
a,x + b,y + + e,z = 1,
a_x + by + + e,z = 1

Is an n variable linear equation system where x,y,. . .,z are the n unknowns.

Ifthe D determinant of the left multipliers of the unknowns is not 0, and

D,,D,, ..., D, denote again the replaced ones with the r right side data, then:
D D
X = D"‘ ,y = Fb , « « .,z = —— aresolutions and the only ones.

By previous theorem, a, D, + b,D, +...+ ¢, D, = r,D.

Dividing both sides with D, we can see that the claimed ones are indeed solutions.

Now enough to show that if there are two set of solutions, then D = 0.

Let x,,y,,++.,2, and X,,Yy,,...,Z, betwo set of solutions.

(The two set can have common members, but not all.)

The X=X, -X,, Y=Y, -Y,, « .., 2 =12, — 2z, differences will satisfy:

a,x +by+...+ez =0

All X,y,..., z can’tbe 0, because we had two sets. Dividing with a non zero, say Yy,
all b, can be expressed from the others. Thus, this column will be a sum of multiples of
others. Then by 6.), D = 0.

Calculating Determinants
1.) Expansion by row (column similarly.)

a, b, e, X X X
X X X X X X X X X X X X
= a4 + b, + + e
X X X
a, b, e, X X X

The x-s mean omitting the members and thus, obtaining one smaller sized determinant.

) a, b
2) “Criss Cross”Rule: | ' '|=a,b,—a,b,
a, by
3.) Cramer Rule:
a, b ¢ a, bl\cl \al, b,
a, b, c¢,| = a, \bz ¢, a, b, = a;byc;tb;c,a +c a,b;
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8. From Variants Of Fractions To Prime Factorization

The “strange” feature of fractions is that different ones can still be equal. For example, % = % .

We called this expansion and simplification, but not all equal fractions are expanded or

simplified from each other. Indeed, % - 10 and the 10 is not multiple of 4. Yet, both sides

are expansions of % Thus, the obvious question is whether all equal fractions are merely
expansions of each other or of a common third one. The answer is yes, and we’ll show this in
the followings by a very simple geometrical way.

An other hidden problem was left at the simplifications themselves. We assumed that crossing
out the common factors from the numerators and denominators leads to the unexpanded forms
of which we spoke above. For example, % = % and % = % Here we only simplified with
one factor in both cases, but in more complicated fractions or products of fractions, we can do
many simplifications. So the question is whether the final simplified form does depend on what
order we do these simplifications, or not. We’ll show that the order is immaterial. Amazingly,
the solution of this second problem follows directly from the solution of the first, that is from
the expansion of any two equal fractions from a common one.

In the followings, we start from scratch and won’t rely on any earlier naive concepts.

From counting, the addition of numbers follows by natural intuitions. Indeed, 4 + 3 can be

achieved as continuing the counting from 4 with 3 steps more. The fact that 4 +3 =3 + 4
does not follow from this procedure, but gradually we learn that addition is also the combining
of sets. Then, 4 apples plus 3 apples being the same as 3 apples plus 4 apples, is obvious.
Multiplication is the repeated additions of identical members.

For example, 3-4 = 4 +4 + 4, on the other hand, 4-3 = 3+3+3+3.

These being the same is not obvious at all and doesn’t follow from this meaning.

On the other hand, the geometrical meaning of 3-4 can be the number of tiles in a rectangle
with sides 3 and 4. Then, this area can be added by rows or columns:

As we learn the times table, we get a sense of “natural evidence” for multiplications. This
becomes the most controversial at the breaking up of numbers into products of smallest units,
so called primes. For example, 100 = 2-50 = 2.2-25 = 2.2.5.5. Here we proceeded in
the order to always find the next smallest possible prime. But we can go differently too!

For example: 100 = 5-20 = 5-2-10 = 5-2-2-5. The above mentioned independence of a
product from its two members easily generalizes to more members, so it’s not surprising that
the number 100 is the value in both cases. However, it is far from obvious that we ended up
with the same primes at all! To feel this, we should imagine a huge number instead of 100.
And yet, it is true for any number: No matter what next possible prime numbers we choose. In
the end, the same set of primes will appear at every sequence of choices, only in different
order. This so called “unique prime factorization theorem” is without doubt the most important
fact of the natural numbers. Our goal is a crystal clear proof of it:
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In the followings, every letter stands for natural numbers: 1,2,3, . . .

1)

2)

3)

x divides y or is adivider of y, if y=m x, thatis if y is a multiple of x.
We include the m =1, thatis y =x case too.
1 divides every number because y =y 1.

x and y are a simple pair if the only number that divides both of them is 1.
For example: 8 and 15 are a simple pair because:

The dividers of 8are: 1,2 ,4,8 and the dividers of 15 are:1,3,5, 15.
(Another name used for being simple pair is being relative primes.)

For any two x,y we define the fraction: Y The y is numerator and x denominator.
X

The value of a fraction can be defined as the partial section of a distance, area or any
other geometrical size. So, we cut the full size in x equal parts and take y many of

z:

these. Then, different fractions may be equal, for example rE because taking “two

thirds” of something is the same as taking “four sixth” of it.
A completely different geometrical definition of fractions could be the slope of lines that
connect two P, Q grid points in a grid system. The horizontal difference of P, Q is x

units, while the vertical is y. Then, Y is the ratio of elevation compared to the advance.
X

Declining lines could even be interpreted as negative fractions, but we ignore this now.

The equality of different fractions would then mean the parallelity of the lines. Or, if we

only regard lines through a fixed O origin, then the equal fractions are only between

pairs of points on one line:

The line in this picture is the %

4 ..
= — line.
6 me

Without such geometrical definitions, the equality of two Y and % fractions can be
X

also definedas Xy = x Y.

This equality of two products can also be seen in the grid system as the equal area of two

rectangles. In our above example, 6-2 = 3-4

Also, if these two triangles are moved into each other’s corner, then the continuation of
4

the other sides will cross on the previously used line with % =% slope:



4.)

5)

6.)

7)
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The equal fractions are also called as variants of each other.

For any two variants RS % if x<X thenalso y<Y,

X
so we can speak about smaller or bigger variants.

% is an expansion of Z, if Y=my and X=mx.
X

The expansion is a variant, because ay_7J
mx X

If % is an expansion of Y , then we can also say that:
X

Y is a simplification of Y .
X X

Y isa simple fraction if x and y are a simple pair.

X
This is logical with the previous simplification name because:

A Y fraction is simple exactly if it can’t be simplified.
X

Y is a minimal fraction if there is no smaller variant of it.
X

For example: % is a minimal fraction because none of % or % are equal to it.
If y or x is 1, then we obviously have a minimal fraction.

The % are called wholes and the L are called reciprocals.
X

All minimal fractions must be simple. Indeed, otherwise, that is if X and Y are not a
simple pair, then they have a ¢ common divider and so the fraction can be simplified:

Y_c°cy_y

X ex  x

The reverse, that is that all simple fractions are minimal is far from obvious.

The opposite would simply mean that besides the minimal fraction, there are other
simple variants too. In short, two simple fractions could be equal. The impossibility of

this is not evident if we regard fractions with huge numerators and denominators.



-30 -

8.) A number is a prime, if it is not 1, but it can only be divided by 1 and itself.

1)

2)

3.)

4.)

5)

6.)

7)

8.)

1)

2,3,5,7,11,13,17, . . . are primes.

4,6,8,9,10,12,14,15,16, . . . are not primes, rather so called composites.

The exclusion of 1 from the primes was logical because the composites can all be
“composed” from primes.

For example: 4=2-2 , 6=2-3 ,9=3.3 , 12=2-2-3 , ...

This prime composition or prime factorization is unique except of the order of the
appearing primes. If 1 were allowed as a prime, then it could be repeated as many times
as we wish, thus making the factorizations not unique.

This uniqueness of prime factorization follows from the above mentioned identity of
minimal and simple fractions. So, in the end we obtained results about the products of
natural numbers, that can be easier proved by looking at the divisions, that is fractions.
This is typical in mathematics to widen the scope of a field, to get an easier proof. If we
wanted to restrict our attention, to naturals and products only, then the same proofs
would become much more artificial and concealed.

: : : Y-y . :
If % is a bigger variant of Y , then ~ 7Y is a variant of them too.
X - X
1f 2 is minimal and is a variant of % , then % is a multiple variant of Y
X X

If = is simple, then it is minimal.

If x dividesa y z product, but x and y are a simple pair, then x divides z.

Ifa p prime dividesa q, q, product,then p divides at least one of them.

Ifa p prime dividesa q, q, . . . q, product, then p divides at least one of them.
Ifa p prime dividesa q, q, . . . q, product of primes, then p is one of them.
If pp,--.p, =9, 9, - . q, areequal prime products, then the p and q
primes are the same except maybe in different order.
VAN
X

Y
X
Yx =Xy 2 Yx-yXx =Xy—-xy 2 x(Y-y)=yX-x) 2 X
- X X
This fact can be seen from the line representation of fractions by simply sliding the Y
X

fraction into the % and thus, the

—Y appears at once:
—X
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2)) % must be a bigger variant, since Y \was a minimal. Thus, we can repeatedly subtract
X

y from Y and x from X and get new variants. If there were a final remainder of y in

Y, and x in X, then this last variant would be smaller than Z, contradicting that it was
X

minimal. Thus, there is no remainder and so % was indeed multiple variant of 3

X

3.) Ifit were not minimal, then there were an other minimal among its variants, of which it
were an m # 1 multiple variant by 2.). Thus, m would be a common divider of x and y.

4) mx =yz > I = J but, s is a simple fraction, and thus by 3.) minimal.
V4 X X

Then, by 2.) & is multiple variant of it, and so z is multiple of x.
z

Y e T e S

y

V4
5.) If p doesn’tdivide q,, then p and q are a simple pair, and thus by 4.), p divides q,.

6.) If p doesn’tdivide q,,then by 5.) itdivides q, q;. .. q,.
If it doesn’t divide q,, then again by 5.) itdivides q, ... q, andsoon.
Finally, p mustdivide q,.

7.) By 6.) p divides a g, but then it must be equal to it too, because q is prime now.

8.) p, isoneofthe g-s by 7.), so we can divide with these.
Then p, isalso one of the g-s, so we can divide again, and so on.
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9. Infinite Decimals, Irrational Numbers

The decimal system makes the basic operations of whole numbers easily calculable, digit by digit:

Addition: Fast way:
357 357
+ 79 + 79
11 436
436 (1 1 remainders only in head)
Subtraction: Fast way:
357 357
— 79 — 79
11 278
278 (1 1 borrowed only in head)
Multiplication: Fast way:
357 ¢ 79 357 79
234\ 2499
159 / 3213
246 28203
75 3\
22
28203
Division: Fast way:
1998 : 5=399 1998 : 5=399
15 49
49 48
45 3
48
45
3 remainder
We have to be careful for 0-s: 2459 : 6 =409
059
5

We can continue the division process by bringing down newer and newer 0-s and thus, get an
infinite decimal form of the result:
2459 :6=409.8333...=409.83
059
50
20
20
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469 : 75=6.2533...=6.253
190
400
250
250

In general:

m-.BB,...B, RP,...P PP...P...=.BB,...B, PP, ...P
n

p p
I | 1

beginning period

Interestingly, the reverse problem, that is how to find the fraction for a infinite periodical
decimal, is also very simple, namely:

_ B,...B, P,...P
B, B, B, P P, P = 4
b [0...00 9.9, 0...0
b p b
230 57
Example: . 2305757 . . . = + .
xample 1000 99000

25 . 3 _ 1,1 _ 7200,300, 4 _ 7504 _ 469

2 e ..=6+ —
6.2533 6 100 900 4 300 1200 1200 1200 1200 75

This fact that all periodical decimals are actually fractions, prove it at once that there must be
numbers that are not fractions, namely the infinite decimals that are non periodical. If we create
an infinite decimal with randomly picked digits, it should be obviously such, but we can even

use rules to generate the digits and yet not have a repeating period. For example:
0.12345678910111213141516171819202122 ... = notperiodical.

The fractions are also called rationals, while the numbers that are non fractions as irrationals.

The infinite decimal system made it obvious that there are irrational numbers and it even
suggests that there are more irrationals than rationals. But this “obviousness” is a false
formalism, that jumps through the original problem of what are numbers at all.

If we start with distances then the fractions or rational numbers are merely the exact whole
divisions of a fixed unit interval. Then the problem of irrationality is to create a distance that is
not obtainable from exact division of the unit. This was investigated by the greeks already.

The infinite decimal solution of course can be translated back to distances as adding together
the smaller and smaller distances that correspond to the infinite many digits. Thus, the infinite
decimal system also shows at once that infinite many distances can add up to a single distance.
This second problem was also investigated by the greeks, but the two problems were not
combined.

Today, when we look at an infinite decimal like 0.12345678910111213 ... we
don’t actually visualize how it is a distance madeup as: 0.1 + 0.02 + 0.003 + ...

In order to appreciate the fact that infinite many small distances can add up to a single one, we

. . 1 1 1 1
hould start with th lest ff —+—-—+-—+— +...=1
should start wi e simplest case o R RET:
1 .1 2+1 3 1
ndeed, 5 4 T T4 T g 4
%+i+é=%=%=l—%,mdsoon.
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The general rule that leads to the numerators is 2" + 2" + . .. +2 + 1 = 2" — 1.
This itself can be proved easily step by step showing it for higher values of n:

1 =2-1 [ o2 . +1
241 =4-2+1=4-1 [ 02 ,+1
4+2+1=8-2+1=8-1/ e2.,+1

On a unit distance the % + i + % + % + . . . =1 equality can be seen directly too:
1 1 1 1
2 4 8 16
| | | |
| I I | I |
The next simplest case would be: LI S R
39 27 &8l

Here a drawing with distances shows quite convincingly that the sum should be % :

1 1
3 9 27 °

W N

To prove this formally is quite easy with some tricks used for the sum as an equation:

x = 14l Ly 0 [ e2 =1_1
3 9 27 3 3
X:(1+L+L+m)(_l):l_l+l_L+L_L+ _1 /.2
3 9 27 3 3 9 9 27 27 81 3 3
- 1.3 _1
3 2 2

In fact, the same trick works for the general case with an s starting value and q multiplier or
quotient as called:

X = s+sq+ sq° + sq ... / e(1-q)
x(1-q) =(s+sq+ sq” +sq’ +...)(1-q) =s—-sq+sq—sq” +...=s5 / :(1-9q)
x = _S

[S—
|
Kl
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Achilles Paradox

How deeply disturbed the greek thinkers were by the fact that infinite many values can add up
to a single finite one, can be seen from the famous paradox of Achilles and the turtle.

They claimed that even if the runner Achilles is 100 times faster than a turtle, he shouldn’t be
able to catch up with the turtle that starts with an s advantage.

Indeed, they argued that by the time Achilles reaches the point where the turtle started, that is
s distance, the turtle will be ﬁ further ahead. When Achilles reaches this point then the

s
10000
The error is the false application of the “always”. Just because something happens infinite
many times, it doesn’t mean that it will be forever. Indeed, if the rain starts now, then there
were infinite many times just before when it didn’t rain, namely a minute ago, half a minute
ago, a third minute ago, and so on.

turtle will be again away. And so on, the turtle is “always” ahead.

S+ S5 __ 4 = s 100s g gy ... is exactly the distance

+ — c.
100 10000 1--L 99

100

where Achilles reaches the turtle.

Anti Achilles Paradox

The solution to the Achilles paradox, that is the acceptance of the fact that infinite many
smaller and smaller distances added up to a single finite value might make us jump to the
wrong conclusion that smaller and smaller amounts always add up to a finite value.
This is not so and we can easily create smaller and smaller values that in the end add up to
infinity. The easiest way is to start with adding up a fix value, say 1, infinite many times,
which is obviously adding up to infinity: 1+1+1+1+...= o
Then, we can distribute each member into more and more pieces, and thus getting smaller and
smaller members. For example, with equal distributions:
R SIS GTIRS S GND I S O e

2 2 3 3 3 4 4 4 4
Quite surprisingly, but not as surprisingly as without this introduction, it’s also true that:
[ NOTERD VD

2 3 4
The general question of when the smaller and smaller amounts add up to infinity, is quite hard.
The square reciprocals for example are not enough to produce infinity:

1, 1,1 .1 _ _
1+4+9+16+25+... 3 (m=3.14...)
On the other hand, the prime reciprocals will give infinity:
1,1,1,1,1
2 3 5 7 11
This suggests that there are more primes than squares, and indeed between all consecutive

square numbers there are more and more primes:

+...= ©

Between 1 and 4, are 2 and 3.

Between 4 and 9, are 5 and 7.

Between 9 and 16, are 11 and 13.

Between 16 and 25, are 17, 19, 23, and so on.

Amazingly, it is still not proven that between every two consecutive squares, there is at least
one prime.
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Irrational Surds

As I mentioned the greeks looked for the irrational numbers as actual distances that can not be
obtained from the exact, whole divisions of a unit. The first concrete example they found was
the diagonal of a square with the unit sides:

d = My
. n

u d,”’ u in other words if u =1, d is irrational.

From the Pythagoras Theorem d> = u® + u? sowith u=1, d>=2 or d=+/2.
By the way, this can be seen easily without the Pythagoras Theorem too from:

2
The irrationality of +/2 means quite simply that there is no ™ fraction, so that (m) =2.
n n

Or to put it even more concretely m® =2 n” is impossible, that is the double of a square
number can’t be a square itself. Our earlier result of the unique prime factorization of numbers,
proves this at once. Indeed, a square number must have every prime factor even many times, so

as a special consequence n’ has either no or even many 2 factors. Then, 2 n> must have
odd many 2 factors, unlike the left sidle m?”. This argument shows that not only V2 s
irrational, but in general any so called “surd” of a whole number is either a whole or irrational:
The surd 4/x is the y value for which y* =x.

For a whole number w, W can be whole, for example 3\/_ =2.

In general, if all prime factors of w are in multiples of k, then /w will be a whole.

However, if W is not whole, then it can’t be an X fraction either.
n

k
Indeed, [Q) = w means m* =w n*.

n
Now if w has a p prime factor not with a multiplicity of k, then p would appear with
multiplicity of k in m", but with not this multiplicity in the right side w n*.
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Part Two: Geometry
1. Euclidian Construction

Euclidian constructions use ruler and compass. But even the usage of these are restricted.

A ruler can only be placed on two points to draw an infinite line through them. The compass
can be placed on any two already obtained points and this distance is kept if we remove the
compass. So, it can be used to draw a circle around any other point with this radius. Points are
obtained as crossings of lines or circles. The main restriction is that the ruler can not be used as
a measuring device and it can not be moved in wanted positions. For example, we might feel
that after drawing two circles, we could find their common tangent by simply placing our ruler
to touch them both. If we look a bit closer we can understand why this is not allowed. When
we place our ruler on two points, we might have to move the ruler too, but this motion can be
made totally exact in the following way: We stick a pin into one of the points and then resting
the ruler against it, we can turn the ruler until it will exactly go through the other point. With
two circles, the situation would be very different! We can easily slide the ruler until it touches
one of the circles, but then it might double cross or not cross at all the other circle. If we pin
this touching point and turn the ruler to touch the other circle, then the touching point will not
remain touching point anymore. So to obtain a perfect touch on both circles, we would have to
make infinite many corrections.

Euclid not only devised his constructions, but also listed the axioms that rule the points and
lines of a plane. These axioms are self evident by our intuitions and when we proceed with
constructions we use them without even noticing. Of course, to prove more complicated
theorems, it’s useful to see the chain of assumptions that were used. To find tricky sequence of
constructions don’t always require such theorems and then the used axioms are unimportant.
Rather we need an exact way of telling our sequence of constructions.

I will present such method:

Elementary construction steps:
1.) Line across two points: <PQ>  ------- ° ®---—----—-—-

A line across a single P point can be picked as <P >.
< P > can also abbreviate an earlier obtained line. e

2.) Circle around a point and passing through an other: (PQ) v RYe)
' ° \
I‘\ P I/,

3.) Placing a distance: d =PQ @-------------- ° R

P d Q L

4.) Circle around a point with a d radius: ( Pd) /', '(/ \\‘

\\\ P ,III
( PQR) is thus the circle around P with d = QR radius. Tt

Later we could use ( P,Q,R) for the circle through the points P,Q,R.
Or (P,Q) for a circle through two given points.

5.) Crossings:
two lines: one line one circle: two circles

<.. 0> <...> P (...) P
<...> (...) < Q (...) < Q

If we just want to pick an arbitrary P point from a line or a circle, we’ll also use this
notationas:<...>} P (...)} P.
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6.) Angle, copied: <<P>a > a is given as an a chord in a circle with r radius.
<P> (Ra)
(Pr) R (Pr) S <PS>
S
r
a
o
r P R

If <P>is <PQ>,then <<P> a > is abbreviated as <PQa >.

Basic constructions:

1.)  Symmetry line: <P L Q> = (PQ) R ,
Q) f ° R SRR
R

(PQ) (QP) i
e

R’ |
2.) Perpendicular line: <<..> |—R> = (Rd) < S “SIT>

<,.> T

If <..>is <PQ>,then <<..> |-R> is abbreviated as < PQ |-R>.
3.) Parallels through PQ: <P||Q>= <PQ |} P>, <PQ |Q>
4.) Parallel line: <<..>||R>= <<<..>}R>}R>

Outer “supplementing” angle of one angle of a triangle is equal to the other two. That is:

Three angles of a triangle is 180°.

Basic triangle constructions:

From the given data (distances or angles), we have to find some A, B, C points, so that the
ABC triangle possess the given data. Apart from the sides and angles, we can also use as data
the so called “height lines”, that go from a corner perpendicularly to the opposite side.
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Data Sketch Construction
c b a=BC (Bce) A
a,b,c (Cb)
a
a=BC <BCB > } A
a,f .,y B Y <CB-v>
a
c a=BC <BCp > } A
a,c,p p (Bc)
a
b a=BC <BCB > } A
a.b.p B (Cb) oA
a
a
a=BC y =180—a -
a,a,p B we can apply the second case
a
, h, = AH <A||H>=<A>,<H>
b,c,h, ¢/ tha \b (Ac) (Ab)
I <H> <H> C
| h,= AH <A||H> =<A>,<H>
¢/ 1 h
a,c,h, : (Ac) (Ba)
2 <H> <H>
B/ h,=AH <A||H>=<A>,<H>
b,
a,p . h P <<A>p > (Ba)
a <H> B <H>
h, = AH <A||H>=<A>,<H>
B/:
b,B ,h, th, b <<A>pB > (ADb)
B <H> B <H>
h,= AH <A||H>=<A>,<H>
o
a,c, h, ¢/ th, (Ac) <ABa >
! <H> B <H> C
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2. Symmetry Lines and Circle

If A,B, C arenot on one line, that is they form a triangle, then:

1.) The symmetry lines of the three sides go through one point.
2.) There is and there is only one circle going through A, B, C.
3.) Any side looks twice the angle from the center of the circle than from the corner.

A
A
B C

4.) One side and the angle across determines already the circle around a triangle.

To construct O from a and o:

A
B- N/ C

180-2a
V=20 — 90—
7 a

1) <A LB> and <A L C> cannot be parallel and thus, they cross inan O point.

AO = BO because O ison <A 1LB> AO = CO because O ison <A L C>.
Thus, BO = CO andso O ison <B L C> too.

2.) AO = BO = CO, that is all the three points are equal distanced from O and so the
circle around O with this radius goes through all three points. Any other circle would
have to have its center on the same symmetry lines, so it can only be the same.

3)
a,a,ha ha:A()H() <A0||H0>:<A0>,<H0>}B (Ba)
o <Hp>
1 h,
5 <BC90 - a > (OB) A
a <CB—(9O—a)>}O <A>J T A

Alternate construction including the 90 — o angles:
a=BC, <BJ|C>=<B>,<C>

(Bhy) (Chy) <<C>aq> } (OB) }< A

<B> <C> <<B> —q > <ByCp >
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3. Height Lines and Side Squares

T 1.) The height lines of a triangle go through one point.

2.) If we draw squares on each side, then the new points obtained next to a corner are equal
distanced from the height line of that corner, namely their distance is that height.

C
d
/’
/
’
/
/’
b ’
/’
’
3 “ h
Y 7
N , a
N
N 7
N ’
Ny ,
N I/
N
hy, . c ,
N
’
/
’
’
’
’
’
/
~ ’
N /
Ny ,
~ ’
N 7’ a
N ’
Ny ,
h, !
’
N
b < ’

3.) If we cut the side squares in two by the height lines, then the parts that meet at a corner
are equal in area.

4.) Pythagoras Theorem: If y = 90° then a’+b’ = ¢’
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P 1.) Lets draw parallels with each side across the opposite corners. Thus, we obtain a bigger

triangle in which the old heights become the symmetry lines.
(Thus follows from 1.) of the first theorem in the previous section.)

2.) The angle between a and h_ is the same as between a and x.

Thus, the two triangles are identical and so, x = h_. Similarly,y = h_.

3)

By drawing parallels with the height, we can change the square parts into parallelograms
with a common s side on the height. The height of both parallelograms is h, by 2.).

Thus, they both have the same s h_ areas.

Here we used the fact that the area of a parallelogram is calculated as side multiplied by
the height. This follows from the same being true for a rectangle:
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4.
The a® and b” are the full parts and thus,
b’ are equal to the two parts of ¢”.
aZ
a’l b’
R There are direct proofs for the Pythagoras Theorem that don’t show the two square parts of c”.

One way to show that a’ + b’ is the same as c¢’, is by adding the same areas to both and
then obtaining identical objects. The oldest proof adds four of the a, b, ¢ triangles and
achieves identical squares with a + b sides:

The other more direct way is to cut the squares themselves into sections and re-arrange them so
that a’ and b”> becomes c’. The simplest of these is cutting only the bigger b’ into four
identical pieces through its center, and arranging these around the whole a* shifted into the

center of ¢?:




~ -
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4. Similarity

1.)  Two point sets are A -proportional or similar if thereisa P <> P’ one to one

correspondence between their points, so that P’Q’ = APQ forall P’, Q’.
If A =1 the two sets are isometric (iso = equal , metric = size).

2.) The S’ setisa A-projection of S froman O pointifevery P’ pointof S’ is
obtained by connecting a P point of S with O and changing OP to OP’ = A OP.

1.) Any triangle that has equal sides with an other can be moved over it with two of the
followings: shifting, mirroring or turning.

2.) If {A’,B’,C’} is A-proportional to {A, B, C}, then it can be obtained as a moved
copy of a A -projection.

3.) Two triangles are similar if and only if they have the same angles.

4.) Two sets are similar if and only if they have the same angles.

ah, bh, ch,

2 2 2

Area of triangle =

A triangle mirrored to the middle point of a side makes a parallelogram:

Parallelogram’s area =s h
sh

Triangle’s area = >

Triangle construction from the three heights. Twice the area=ah, = bh, = ch_.

If the triangle constructed from h, , h, , h_, has s, , s, , s., “secondary” heights, then

c?

twice the area of this triangle=h_ s, = h, s, = h_s_. Thus, dividing the two equations:

— = — = = andsothe a,b,c triangle is similar to the s, , s, , s . This one can be
S

a

SC Sb

ha Sa

We can give a proof for 3.) of the theorem in the previous section with similarity, without
using 1.)and 2.):

%:% 2> xb =yc




T

T

R
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5. Dividing Distances and Angles

Halving an angle = <S L R>

Constructible special angles: 60

90° = perpendicular line , 60° =
60 60
45° , 30° can be obtained by halving these.

n section of a d distance:

Measure arbitrary r distance, (n— 1) times on any angle.
Do the same on the opposite end and opposite side.
Connect the (n— 1) many pair of points with parallel lines:

The n section of an angle is not constructible for arbitrary n and arbitrary angle.

With repeated halvings, any angle can be cut into n= 2* many equal parts. But:

The trisection of an angle is not constructible for an arbitrary angle. In particular:

The trisection of 60° is not constructible! In other words, 20° is not constructible!

Since 60° is the third of 180° and it is constructible, thus obviously:

For particular angles, we can construct the n section, even if n is not 2.

The most important special question was, what sections of the full 360°, are constructible?

In other words, how many sided symmetrical polygons can be constructed in a circle?

Gauss solved this problem when he was eighteen years old and this made him to become a

mathematician, rather than a philologist. His statue stands on a seventeen sided polygon,
because that was the smallest sided, that was not known to be constructible before him.
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Archimedes devised the following “construction” to get the third of an o angle:

Measure o up in a half circle and from the obtained P point of the circle, draw a line that
determines a distance equal to the radius between the other crossing with the circle and the

base line of the half circle! Then the angle between this line and the base line is %.

F

120 — 4/

Indeed, B+180 -4 B + 0o = 180 > p = %

The problem is that we used our ruler as a measurer, which is not allowed.
We can measure distances only with the compass.
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6. Non Commeasurable Distances

This is the old Greek way of looking at the irrational distances.
Indeed, if b is a unit then an a distance being irrational means that a = 1 b.
n

This is the same as -+ = b for any m, n natural numbers.
m n

In even simpler way, there is no u distance that would be common unit for a and b,
thatis a=mu and b=nu isimpossible.
This was a better way of looking at irrationality, namely for finding actual examples a, b non
commeasurable distances.
Among the 2 fractions, the vital relation is the expansion and simplification.

n

2 - 4 andhere % is an expansion of % by 2, while

3 6

The % can’t be simplified anymore, so it is a simple fraction.

4

2 isa simplification of &

There is only one simple fraction among the equal fractions, or to put it another way, two
simple fractions can’t be equal. This fact might seem obvious from the practices of fraction
simplifications, but it’s far from obvious logically. Indeed, looking at two equal fractions with
huge numerators and denominators, nothing guarantees that when simplified, they end up to be
identical. The crucial concept was of course, the “minimality”.

Among the equal fractions, there has to be a singular one that is minimal, in the sense of
having the smallest possible numerator and denominator. Then, it was quite easy to show that
all other fractions have to be extensions of this minimal. Thus, the minimal is also the simple.

This “simple” versus “minimal” idea turns out to be still lingering among the general %
distance ratios. And they will provide the two methods to create incommeasurable distances.

Of course, if a, b are distances then there is no simplest or minimal among the % ratios.

Already with a fix 7y angle between them, we can continually create arbitrary small same
ratios:

b b’

So the whole fractional simplicity and minimality seems meaningless directly.
But, a new question can be asked about the a, b distances. Namely, whether a u unit could
be measured into both of them. That is whether a= mu , b=nu is possible:

nu
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As we said, the Greek mathematicians realized that not all a, b distances can have common u
unit. The basic proportionality of Euclidean geometry means that if an (a,b, vy , a , B)

triangle leads to a , b that have common unit, then any (2’ ,b’, vy , a , B) is such too.

a _ a _ pa

b x ob and more
importantly, if a=mu and b=nu thenalso = mpu = mu’ and b>’= npu = nu’.
So, the v’ = pu is a common unit for a’, b’.

In reverse, if an a, b have no common unit, then the proportional a’, b’ have neither.

So the key to find distances without common units, is essentially finding vy , a , B angles

Indeed, if (a’,b’ ) isa p proportional change of (a, b) then

where this happens. Of course, two of them already determines the third.

This theoretical idea of going for similar triangles is also the practical way to find distances
without common unit. Namely, if (a=mu,b=nu, vy, a, ) implies another triangle
(@=m’u,b’=n"u,y,a,P) sothat a’ <a then the original triangle is impossible.
Observe that besides the obvious fix angle, that is similarity of the triangles, the crucial
condition is that the new sides a’ , b’ are made of the same old u unit. Plus, a decrease: a’ <a.
We can easily guess the argument that makes the original triangle impossible:

Exactly due to the proportionality of the Euclidean geometry, we can create from
(@,b’,y,a,p)anew (2”°,b”, v, a, B) again and then again repeatedly.
Butthen,a=mu > a’=m’u > a”’=m’ u > .. . isa contradiction.

Namely, how could multiples of a fix u decrease infinitely?

If we require a bit more precision, then it turns out that this impossibility is a bit trickier then
seemed. Indeed, a first version could be that the infinite decrease gets arbitrary small, yet it
can’t be less than u. First of all, decreasing numbers don’t necessarily have to decrease to 0.
Secondly, a 0 multiple could reach 0 at once. So a better argument would make sure that 0
is not reachable. Then, we must have infinite many a>a’>a’> > . . . but,a=m u means
that only maximum m possible multiples could at all be, namely u,2u,3u, ..., mu
Unfortunately, this:

(a=mu,b=nu,y,a,p) -> @=m’u,b’=n"u,y,a,p)

method is still very vague. How could we guarantee the new m’ , n’ without the particular
knowledge of m, n ? In other words, a’ , b’ should be obtained directly from a,b .

The solution is very simple. All we have to require is that the new a’ , b’ are made from
multiples of the old a, b, thatis: a’ =pa £ qb , b>=ra £sb

Here,p, q,r,s arenatural numbers and the + means adding or subtracting distances.

Then, if a=mu and b=nu, it guarantees at once that a= m’ u and b’ = n’ u, simply
because pa,qb,ra,sb, areall u multiples again and their sums or differences too.

So our method for impossibility of a = mu , b = nu is now:

(a,b,y,a,p) > (@=patqgb,b =rastsb,vy,a,p)

with the added requirements: a’ <a , a’ , b # 0

The a’ < a goal of course especially emphasizes the — choices in *.
This method is an “opposite” of the minimality among fractions.
Another method is the opposite of simplicity. Namely, if:

(a=mu,b=nu,y,a,p) > m, n have common f factor

f

Then, (a’= By , b’ = % u, v,oa,p) isasimilar triangle, so again we obtain an infinite
decrease: a > a’ > a’’ >

b
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Such f common factor of m , n could be guaranteed by some special relation of a , b
coming fromthe vy, a,p.

For example, a? = p b? witha p prime number guarantees f = p.

Indeed, (mu)? = p(nu)? > m?=pn? so, m? is dividable by p. Since p is prime, thus
m must be dividable by p too. Using m=pr, then

(pr)* = pir? =pn?, so n?=p?'r? so nisdividable by p too and again, this
implies that n is dividable too. Thus, indeed, p is common factor of m and n.

T The simplest (a, b, 45,90, 45) triangle:
45
a
b
45 90
b

can be used for both methods:

P For the “+ reduction” method:

b-(a—b)=2b-a

b

We mirrored the b side onto the a side through the angle halfer.

Thus, we obtained the leftover a — b, which determined the same in the two triangles.

This determined the leftover from the other b sideas b—(a—b)=2b—a.

The small 2b—a , a—b, sided triangle is similar to the original, because one of its angle was
already 45 and an other is the mirroring of 90. So indeed:

(a,b,45,90,45) > (a’=2b-a,b =a-b, 45,90,45)

It’s also obvious that a’= 2b—-a < a.

Thus, our first method, that is similarity and £ combination from the old sides, proves that the
original triangle can’t have common units.a=mu , b=nu is impossible.

Just to repeat the argument: If a=mu,b=nu were,then a’=m’u , b>=n’u were too.
Then, (a’’, b’’) could be created similarly and so on, giving infinite many smaller and smaller
versions. But with a starting a=mu we can only have finite many smaller multiples.
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The second “common f factor” method applies too, because:

a’=2b?

So a=mu , b=nu implies that m, n are both even. Thus, the
(a=mu, b=nu, 45,90,45) triangle can be halved exactly on units:

But this half triangle is similar too, so with the repeated argument, it must have even many
units again. So we can half it again, and so on, getting decreasing infinite many u multiples.
This is impossible, thus, our original assumption ofa=mu and b=nu is false.

To see the 2 common factor, that is the evenness of m and n directly:

a’=2b> > (mu)’ = 2(mu)> 2> m’=2n> > m’ iseven > m iseven

m=2r > 2r)> = 4r> =2n> > n*=2r> > n’ iseven > n iseven

The “+ reduction” method can be applied to:
1) (a,b,72,72,36) with a’=b , b’ =a-b

2) (a,b,90,67.5,225) with a’=b , b’ =a-2b
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1.)
b
a
72
b’ a—b
72 36 /'
b=a
a__b _ a
b a—-b b'
2))
22.
a
b’ 45
22.
b=a
a b a'

The non existence of common units for a, b also means the non existence of common

multiples. Indeed,a=mu,b=nu > u=i=h - na=mb.

m n
With vy = 90°, this can be represented as the existence of lines through the origin of a
Descartes coordinate system that never go through a grid point again.
Indeed, the B = 22.5° or 67.5° angle lines from the origin must be such:

y
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Same % ratio can come out from different y , o , B angles.

In fact, we can use other ratios to specify the angles foran a,b.
This is exactly how the old trick works to construct 72° and 36°.

We derived the % = b2 5 from the special relation of 72° and 36°.

But the same % = b2 b can be obtained by creating new angles that we are not even
a J—

interested in. Rather, it will help to create the (a,b, 72,72 ,36) triangle.
Construction of 72° and 36°:

Start with arbitrary b distance. Erect 90 and measure b onto it.

Connect it with the other end of b and continue it with b in the opposite direction.

This gives our a . Using this on b for both sides gives the 72,72, 36 triangle

36

N |c

90 72

The obtained construction of 72° is also a method of the construction of a pentagon, because:
360 _ 7

5
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7. Constructibility

Constructible points and sets

Let two points be fix in a plane as the given unit. All other constructible points will be obtained
as crossings of constructible lines and circles.

The constructible lines are connectors of constructed points.

The distance between two constructed points is also regarded as constructible.

The constructible circles are ones with centers as constructed points and radius as constructed
distance.

Finally, the angles between constructed lines are also regarded as constructible.

The first constructible set is the line of the unit.

The second constructible sets are the circles with centers of the unit ends and radius as the unit:

Thus, we obtain four new points, namely two on the unit line and two crossings of the circles.
These two crossing points of the circles can be connected with each other and also with all four
points on the unit line. So, nine new lines can be obtained.

These ten lines will have a lot of crossing with each other and the two circles.

Then new lines and circles can be constructed. And so on.

There is no fix sequence to obtain all constructible sets. Above we merely started in a
seemingly logical way. The obtainable sets are of course still well determined.

Indeed, a set is constructible if there is a particular finite sequence that obtains it.

1.) 60°, 30°, 90°, are constructible.
2.) The infinite unit grid is constructible:

3.) The infinite fractional grid is constructible:

-l_L_|--
1

L_|-2
G

=TT AT TTrT|IT T
[} 1
]
T
1
1 1 1

| |
JERRP PRI R P T
[
1
|
|

—d4-t=f--t-r-|--
JRRTIYINN E T T
B EE e -

4.) Connecting any two points on the fractional grid, they cross in a fractional grid already
there.
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1)
60 0

60 60 90

60

2.) We can repeat the unit and use 90°.
3.) Crossing already the points of two grid line will cut all fractions.

—

4.) Two grid lines can be regarded as x,y coordinates and then any fractional s sloped and
¢ crossing of y has the equation: y=sx+c¢

The crossing of two such lines is a linear equation system and is easy to see that it leads
to fractional solutions.

This “criss cross completeness™ of the fractional grids is interesting, but seems as a detour from
constructability. The real reason the whole coordinate view is going to be useful is the

Pythagoras Theorem. Usually it is expressed as a’ + b”> = ¢?, but actually it also means that
any d diagonal distance in a coordinate system can be calculated from the x ,y coordinate
distances:

X

Before we even go to our main object, which is proving that 20° is not constructible, I prepare
that with an easier, but just as big surprise:
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T There are no fractional lines that would be in 60°.

P Such two lines could be in two possible situations relative to the unit grids measured from the
crossing of the lines:

a2 +1 a L —J(1-a)* +(1-b)>

Both lead to the same impossibility but we only follow the first:
2
@a+b) = £ +b* +2ab = (Ja’ +1 g)z + (b1 - —V"ﬂ‘;l)2 -

%(a2+1) + b1+ %(a2+1)— Va2 +1 b +1

A+ +2 — Jat+1 b +1

Ja?+1 b2 +1 3 =2 earea=a+b

So 3 = a+b = at+b would be rational.
Va?+1 /b’ +1 2-2ab
R The fractional grids could be constructed with a limited use of the compass, as only a measurer

on a line, plus a 90° ruler. But this would lead to non fractional distances too. For example, the
diagonal of a unit grid is V2 and it could be measured onto other lines.

I think 60° could still not be obtained this way. If anybody knows how to prove this, I’d like
to hear about it.

Now we turn to our goal to prove that 20° is not constructible at all. This of course means at
once that we can not trisect angles in general, because a 60° is constructible.

The amazing thing about this proof of the inconstructibility of 20° is that it first translates the
whole problem into algebra:

T Algebraization Theorems
1.) Distance constructability condition.

A distance is constructible if and only if it is expressible by +,— , e | + | Vo from 1.
In short, if it is square root expressible.

2.) 20° constructability condition.

20° is constructible if and only if an x distance is constructible for which x> =3 x + 1.
3.) 20° non constructability condition.

If x> =3x+1 has no square root expressible solution then 20° is not constructible.
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2)

3.)

1)

2))

- 56 -

First of all, it’s easy to construct the square root of a d distance as follows:

Doh=d s pw-a>n-Va

1 d

The reverse is that any constructible distance is square root expressible from the distances
that are used in the construction. Indeed, then the used ones are again square root
expressible from what they used, and so on, everything is from 1.

It would be better to go backwards through the directly used distances, but this is a bit
ambiguous when we use earlier crossing points. So here, the coordinate representation
helps again. Indeed, this way we can talk about square root expressible points too.
Namely meaning the coordinates. In fact, square root expressible lines are connections of
such points and square root expressible circles are ones using such center and radius.
Then all we have to show is that crossing of lines and circles keeps square root
expressibility. This is not too difficult.

Trivial by 1.) and 2.).
A set of real numbers is operation complete if the +,— , o , + of members is member
too. At + the divider is assumed to be non zero.

An S set of real numbers is a square root base for an x real number if S is operation
complete and there are some u, v, w init, sothat x=u+v J/w .
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2)

3)

4)

5.)

1)

2))

3.)
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E,,E, ,...,Ey isasquare root extension sequence if:
a.) E, =the fractions

b.) Thereare w,,w,,...,wy ineach E,,E,, ..., Ey,sothat:
c) E, = {x;x=u+v,w_, sothat u,v € E_, }

Every square root expressible number is element in a square root extension sequence.

In a square root extension sequence E, < E, < ... < E and

E, ., 1sasquare root base forany x € E, .

If x>+ax’+bx+c hasan x, rootandan S square root base for x,
contains a, b, c,then S contains a root too.

Ifa,b,c € E, but x’ +a x> +bx+c hasnorootin E, then

it has no root in any square root extension sequence.
Thus, it has no square root expressible root either.

x> ~=3x—1hasnorootin E,.

Thus, it has no square root expressible root.
20° is not constructible.

Start from any square root of fractions and then widen outwards.

Example: For 1/,/% ++/5
/% € E, , /%+ 5¢E, , ‘//% +45 € E,

The widening is obvious because 0 eevery E, and wecanuse u+v + w withv=0.

For the square root base “extension” we only have to show that every E_ is operation

complete. +, — , o are obvious and for + observe:

urvw _ @rvYw)(p-gVw) _ up-vaw+(vp-ugidw _ o
= = 5 5 =rts 4w

p+gvw  (p+avw)(p—qw) pP’-q’w

Suppose x1=u+V\/§ with u,v,w e S.

(u+vx/§)3 + a(quV\/;)2 + b(u+vx/§) + ¢ =0 thatis:

W3 uivadw +3uviw + Vwadw tau+2auvw +aviw+
bu+bviw +c = 0 re-arranged as:

(u”+3uviwt+au’+aviw+bu+c) +[3u’v+ vPw +2auv +bv]dw =0

If [ ];tOthen\/;:—%,sou%-V\/;eS.
If[ ]=20then ( )= 0 tooand putting XZ—V\/; into x® +ax*+bx+c
weget (U—vw) +au-viyw) +bu-viw)+c=

( )—[ ]N =0-0+w = 0. So X, 1sroot too.

Since x, # X, ,thus —a— x, — x, isroot too. (See Lemma)
But —a—-x, - x, = —-a — u+viw) — (u—-vaw) =—-a-2u eS8
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Lemma:

If x, # x, arerootsof x’ +a x> +bx+c then —a— x, — x, is root too.
Proof:

1.) Forany x’ +ax>+bx+c and x, thereare p,q,r that

x’+ax’+bx+c=(x-x,) (x*+px+q) +r
2) If x, isrootof x’ +a x> +bx+c then r=0.
3) If x, # x, arerootsof x’ +a x* +bx+c then x, isrootof x> +px+gq
and there is x, sothat x> +px+q = (X — X,) (X — X,).
So x> +ax’+bx+c= (x—x,) (X—X,) (X-Xx;) =
XD (X X+ X)) XD (X X, F X X T X, X)X <X X, X

So, x, = —a— X, — X, Isroot too.

By the widening E, < E, , E,, ..., E.Thus,by 3.)
thenin E_, andso on, finally in E, too.

n—-1°

arootin E_ implies root E
But this was assumed to be false.

Suppose a simple % fraction were root: (%)3 -3=-1=0.

Then, a’~3a b? — b’ = 0.
Every prime factor of a is also of a’~3a b®,soof b’ and b too.

Every prime factor of b isalsoof —3a b> — b’ ,soof a’ and a too.
Thus, a,b can’t have prime factors, so they are 1. But a = b = 1 is not a solution.
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8. Isometries Of Space

PQ denotes the interval between P and Q.

PQ =RT denotes that the two intervals have the same length.
PQ || RT denotes that the two intervals are parallel.
PQ v RT denotes that the two intervals are not parallel.

1.) A transformation is any P’ assigned points to all P.

2) S’={P’;P eS}.

3.) P isfixpointis P’ =P.

4.) S isafixsetif S*=S.

5.) S isconserved setif S* < S.

6.) P* =middle point of PP’.

7.) P, =middle perpendicular plane of PP’ = perpendicular to PP’ through P*.
8.) The identity is the P’ =P transformation.

A P’ non identity is:
1.) Isometry (iso = equal, metry = length) if P’Q’ =PQ forall P, Q.
2.) Shiftifall PP’, QQ’ are:

a.) parallel P » P’
b.) same length R
c.) same directional Q TQ

3.) Mirroringtoa Il plane,ifforall P, I =P, .

4.) Turn withan a angle around an L line with one of its directions chosen,
if P, denotes the perpendicular projection of P to L,
then P’P, isthe o turnof PP, in the plane perpendicularto L,

looking from the chosen direction.
Of course, looking from the other direction, the angle would be — a = 360 — a.

Any P’ transformation must obey exactly one of the followings:

1.) All PP’ are parallel andall  P’Q’ are parallel to PQ.
2.) All PP’ are parallel, but not all P’Q’ are parallel to PQ.
3.) Notall PP’ are parallel, butall P, go througha fix L line.

4.) Notall PP’ are parallel, and not all P, go through a fix L line.
The four exclude each other and one must be true.

The four cases of the previous theorem for an isometry are:

1.)  Shift
2.) Mirroring
3.)) Turn

4.)  Turn then mirroring or turn then turn.

1.) All PP’ are parallel by definition and P’Q’ =PQ = PP’ =QQ’.
/P

P/
o/ Jo
/ 7
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2)

3.)

4)
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Let P’Q’ be one that is not parallel with PQ. Then, P°’Q’=PQ = P, =Q,.

P, \P’
o/ \o
/ \

P, =Q,
For any third R point, R°’P’ v RP or R’Q’ v RQ must be true,so R, =P, or Q
If PP v QQ’,then P, v Q,,sotheycrossinan L line.
We claim that P and P’ and Q and Q’ are not only equal distanced from this L line,
but are turned with the same angle. That is, if P, and Q, denote their drop to L, then
PP PPZ =QQ.Q Z: L
P

Q XQ’

Ifall R, go through L, then of course, this same turn works for all R to get R’.

Let PP’ v QQ’ andturn S around the L line, that is the crossing of P, and Q,
with the o angle determined by P’ and Q’. If this turned setis S_, then it is isometric
to S” and this S, = S’ isometry has at least two fix points, namely P and Q.

Ifall R R’ are parallel, then by 1.) and 2.), we have a shift or mirroring, but since we
have fix point, we can’t have a shift, so we have a mirroring. If not all R_ R’ are

parallel, then by 3.), we have a turn around the PQ line, because these are fix, so all
R go through them.

Special isometries are:

The three basic: shift, mirroring, turn, and the following three combinations:

1)
2)
3.)

A turned mirroring is a turn around an L and a mirroring to a plane perpendicular to L.
A shifted mirroring is a shift and a mirroring to a plane parallel to the shift.
A screw around L is a turn around L and a shift parallel to L.

In the special combinations, using “and” instead of “then” was justified because their order was

immaterial. For example, the screw is a turn then shift or shift then turn.

All special isometries have conserved line.

Trivial one by one.

Ifan L line is conserved, then the isometry is special, namely:

1)
2)
3.)

4.)

L is either fix or mirrored to a IT plane or shifted in itself.

If L is fix then, P’ is either a mirroring to a II, containing L or a turn around L.
If L is mirrored to IT,then P’ is either the same mirroring in the whole space or
a turned mirroring to IT around L.

If L is shifted, then P’ is either the same shift in the whole space or the same
shifted mirroring to a Il containing L, or a screw with the same shift.
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If L has two fix points, then the whole L is fix.

If L has only one fix point O, then any other P must be mirrored to O to have

PO = PO’ = P’O.

If L has no fix points, then for any P, Q on L we have PP’ =QQ’.

Ifall RR’ are parallel, then since we have fix points, we can’t have a shift, so it must be

a mirroring to a Il and it must contain all fix points, including L.

If not all RR’ are parallel, then we must have a turn around L because all R, must

contain all fix points, including L.

IT is conserved too and either it is fix or for all R point of it, R, contains L, so II

is turned in itself. If II is fix, then in the space we have the same mirroring as in L, or

if IT is turned, we have a turned mirroring.

If R, isthedropof R to L, thenthe RR, distances are preserved. In other words,

looking perpendicularly to L, we have an ® plane in which P’ is still an isometry.

But here, L is a fix point, so we have the following possibilities:

a.) The whole ® plane is fix, and thus, P’ is the same shift in the space as in L.

b.) There is only a line fix in ®, through L, which in spaceisa II plane. Then, in ®,
we have a mirroring to Il and thus, a shifted mirroring to it in space.

c.) Only L is fix in ® and then we have a turn in ® and thus, a screw in space.

“Turn then mirroring” replaced by special isometries:

1)
2))
3.)

1)

2)

A turn then mirroring to a plane going through the turn line is a single mirroring.
A turn then mirroring to a plane parallel to the turn line is a shifted mirroring.
A turn the mirroring to a plane crossing the turn line is a turned mirroring.

L R |10
IT R, “ R’
from top:
o
2
Thus, all RR” will be parallel and L is fix, so we have a mirroring.
L Hf% n 1+
from top: Le \‘I /!

We turned II with + %. These are mirror of each other to II and also, the o turn of

IT —% s II +%. Thus, I1 —% is conserved by the turn then mirroring.

If a line is conserved, it either has a fix point and is a mirroring or hasn’t and is a shift.

Here H—% can’t have fix points, so it’s shifted in itself, and thus the whole plane is a

shifted mirroring to this same line.
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Then, layer by layer, the whole space is a shifted mirroring to I —% .

L P L

By 3.) of previous theorem, enough to show that there is an L, line, that is mirrored in
itself. The P point of the above picture defines such L, if P and P, are symmetrical
to the perpendicular to II. Indeed, P, mirrored to Il will fall on the continuation of
the PO= L, line.

“Turn then turn” replaced by special isometries:

1)

2)

3)

1)

2)

3.)

1)
2))

a.) Every a turnaround an L, line followed by a d shift perpendicularto L, is just
an o turn around an L parallelto L.

b.) For every o turnaround an L line, and any L, line parallel to L, the turn can
be replaced by same o turnaround L, followed by a shift perpendicularto L.

A turn followed by a turn around an axis that is parallel to or crosses the first, can be
replaced by a single turn.

A turn followed by a turn around an axis, that is not in the same plane as the first, can be
replaced by a screw.

a.) L can be located as the point in the figure and it is fix:

b.) d can be established from the figure and L becomes fix.

There are two lines so that the first turn turns the first line in the second, while the second
turn turns the second line into the first. Thus, the first line will be a fix line.

Let L, be the axis of the firstand L, of the second! Let L, be the parallel with L,
that crosses L,. Then by 1.) b.), the turn around L, can be replaced one around L,
followed by a shift perpendicular to them. Then by 2.), the turns around L and L, can

be replaced by one around an L.
The followed shift can be decomposed into a perpendicular and parallel component to L.
The perpendicular shift melts into giving a new turn by 1.) a.).

Every isometry is a special one.
Every isometry has a conserved line.
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Every isometry can be replaced by a sequence of mirrorings, namely:

1)
2)
3.)

1.)

2)

3.

A shift can be replaced by two mirrorings, both with perpendicular plane to the shift.
A turn around L can be replaced by two mirrorings with planes crossing in L.
Every special isometry is:

a.)

b.)

c.)

one mirroring or
two mirrorings or
three mirrorings, where the last is perpendicular to the first two or

d.) four mirrorings, where the second two are perpendicular to the first two.

1 ]

P’

A mirroring itself is basic.

A shift is two parallel mirrorings by 1.).

A turn is two mirrorings with crossing planes by 2.)

A shifted mirroring is two parallel mirrorings followed by a perpendicular one.
A turned mirroring is two crossing mirrorings followed by a perpendicular one.
A screw is a turn then shift or shift then turn and thus is:

two crossing mirrorings followed by two perpendicular ones that are parallel or
two parallel mirrorings followed by two perpendicular ones that are crossing.
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9. Parallelity

The most fundamental two concepts of geometry are the points and distances.

In the modern view, the points are simply the elements of the whole space and lines , circles,
planes and other geometrical objects are set of points in the space. Or to put it an other way,
these are special subsets of the space. The connecting interval between two points is also a set
of points, in fact it is the simplest special set by which all the others will be defined.

Sometimes we simply call this connecting interval as a distance, but it is not quite correct,
because the proper meaning of the distance is its length. To measure a length, we need a unit
length, so we first need a comparing of distances. The simplest relationship is the equality of
two distances. Or to say it properly, two connecting intervals having the same length. This is
also a basic concept.

So as we see, actually we have three basic concepts: Points, connecting intervals and equality
of such connecting intervals. A, B, C, D, E, F, G, H and M, N, O, P, Q, R letters will be used
for points, while 1, J, K, L, S, T, U, . . . for sets of points. For the connecting interval, we
simply put the two points next to each other. So for example, AB is the set of points on the
connecting interval of A and B.

The intended meaning of AB is the shortest connection from A to B. This also means that if
we picka P and Q point from AB, then not only P and Q, but all the shortest connecting
points from P to Q must be in AB. Indeed, otherwise we could shorten AB.

Soinexact form: P,Q € AB - PQ < AB.

This is the most fundamental axiom of connecting intervals. But it doesn’t guarantee yet, the
full meaning of intervals as shortest connections. It didn’t even use the concept of lengths.

The equality of lengths will be simply denoted as AB = CD meaning that the AB and CD
connecting intervals are equal long.

The physical meaning of this equality is not as simple as it seems. If we take a measuring tape
or a rigid object that is equal to AB, then we have to move it to place it over CD. Before
Relativity, nobody would have worried about this, but now we all heard of the change of length
caused by motion. Of course, that effect of Special Relativity only causes problem, while the
object is in motion, so moving and then slowing down should be okay. On the other hand,
General Relativity claims that gravitation changes the length too, so that causes a bigger
problem. Anyway, we can ignore these problems and rely on our intuitions.

The connecting intervals and their equality of length offers an obvious road to define smaller
and bigger lengths too. Indeed, all we need is an axiom that claims that for any two intervals,
exactly one of them will be equal to a beginning interval of the other, and then this can be
defined as the smaller. Amazingly, we could have gone the opposite way too, that is start with
a smaller, bigger comparison of lengths as basic concept and define the sets of connecting
intervals through this. Indeed, a P point is on the AB interval, if and only if AP and PB are
minimal. In other words, for any Q point that is not on the interval, AQ or QB (or maybe
both) must be bigger than AP or PB:

With this approach, AB = CD or AB < CD would only mean the comparison of lengths
assigned to pairs of points, not to their connecting interval and the actual interval would only
become meaningful later. I think that our above approach is more natural.

The idea of measuring one interval onto the other to define the smaller and bigger length, can
be modified to define addition and subtraction of lengths too. Then, AB <CD can be replaced
by AB=CD-PQ or CD=AB + PQ.

The most plausible claim about lengths is that for any three A, B, C points, AC + CB > AB.
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A B

This so called triangle inequality expresses that from “A to B”, the connecting interval is
shorter than going through an “unnecessary” C.

By repeated application this also implies that AB is shorter than any

AC, +C/C,+...+ C_,C, + C, B broken connection:

CZ Cn—l
A B

The triangle inequality doesn’t follow just from the comparability of lengths. It requires some
axioms. Once however it is proved, we have the original meaning of connecting intervals as
shortest connections indeed established.

Lines are usually regarded as basic concepts but with our approach they can be defined as
simply the combined sets of wider and wider intervals. So < AB > can denote the combined
set of all intervals that contain AB. Of course, it is still far from obvious that if P and Q are
points from < AB >, then this same line would be obtained starting from PQ.

Inshort: P,Q € <AB> - <AB> = <PQ >. To prove this, we need again new axioms.
Those who regard lines as basic concepts only seemingly avoid this complication because for
any two points they have to order a line. And thus, for one line the different pairs of points
must determine the same. In addition at the end, they still have to regard lines as sets of points.
Above, in <AB > = <PQ > we used the equal sign for the equality of two sets meaning that
they have the same points. This is a little bit contradictory to our previous usage of AB = CD,
which only meant the equal length. But, otherwise we would need two equal signs. One for sets
and one for lengths. The actual equality of the AB and CD intervals is practically never
needed, so we can use the other meaning instead of this. So, in short, the = sign means
equality of sets except for intervals where it means the equal length.

By the fact, that any two points of a line determine it, it’s easy to show that two lines can only
have one common point (or none). Indeed, if they had two A and B, then these would
determine the same line. Having a common point is also called as crossing for lines.

After the lines, usually the planes are introduced, but if we restrict our attention to a single
plane, then the real problems are easier to see, so in the followings we only deal with this.

Just above we mentioned that two lines can have no common point at all, which in space is
obvious because two randomly chosen lines simply avoid each other. If we are in one fix plane,
then it is still possible that two lines don’t cross each other, indeed this is what we see as
parallelity. There are two alternative approaches to parallelity. The first is to claim that the
parallel lines keep the same distance from each other.

NN AN A

\4 \ \4 \

The other is to say that they are going in the same direction. If we ask more about what we
should mean by same direction, then we soon realize that it can only be specified relative to a
third crossing line. Indeed, the two parallels must have the same angle to the third one.
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Everyone would guess that the first approach, that is the kept distance is easier to define
precisely than the second, because that requires the concept of angles as opposed to distances.
As it will turn out, the equidirectionality is simpler than fix distance. But already now we can
see an advantage of the equidirectionality as follows:

By drawing two equal angled lines to a third, at least we know that we are dealing with two
lines. On the other hand, if we start with one line, then measure up the same lengthed intervals
from every point, then it is not so obvious that the obtained points form a line at all. Indeed,
intervals and lines are minimal connecting “curves”, so a horizontal minimality moved
minimally vertically could very well be non minimal anymore.

minimal?
AN AN A AN AN
minimal d d d d d

minimal line

It became obvious already for Euclid that parallelity is the crucial problem of geometry.

He firmly believed that the three concepts, non crossing, having fix distance or having same
direction are identical, but when he tried to prove their identity, he went into strange logical
circles. Finally, he chose as axiom the assumption that if two lines are both having less than a
right angle to a third towards each other, then these two lines must cross on this side of the
connecting line:

L
N e

a,f <90° > L,L cross

B

/
L’

Later, it turned out, that a much simpler assumption could still prove the identity of the three
form of parallelity, namely John Playfair and Legendre stated about the same time:

Axiom Of Parallelity: In a fix plane:

Foran L line, and an outside P point, there is only one non crossing L’ line through P:

P single L’ non crossing
°

In spite of its beauty it was still regarded as too complicated and so, up until the 19-th century,
many mathematicians wanted to avoid this axiom by somehow deriving it from the simpler
other axioms. Some of them attempted to find such derivation by the following way: They
assumed that the Axiom Of Parallelity is false, that is assumed more non crossing L’ lines and
then tried to reach a contradiction from this. This in effect would indeed make a proof for the
unique non crossing line. To their biggest surprise instead of a contradiction weird, but
beautiful possibilities followed. The first person who went into this jungle and became
convinced that it must be a meaningful reality was Janos Bolyai, the son of an old friend of
Gauss. When the father showed his son’s results to Gauss, he replied by saying that he can’t
praise the young man, otherwise he would have to praise himself, because he already realized
all that long ago. This was of course, a terrible blow to Janos. Gauss indeed, explored the
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possibilities of many non crossing lines, but left his notes in his drawers because he thought the
world is not ready yet. Later, when he learnt that a third person, Lobachevsky, also realized
that something lies behind the non euclidian parallels, Gauss finally openly praised
Lobachevsky, but still didn’t tell him about the young Bolyai.

These three people, Gauss, Bolyai and Lobachevsky still remained within classical
mathematics. To see why, we have to jump to just a few decades forward, when Beltrami
finally made the crucial step not only in the history of mathematics, but probably in the whole
history of human intellect. He realized that the points of a euclidian plane itself can be used to
show that a non euclidian plane can exist.

If we shrink a plane towards a central point so that the whole plane fits within a disc, then
obviously the lines will bend into curves. This itself is an interesting idea because it shows that
the same truths can be kept by replacing the lines with other special curves. But Beltrami went
further and realized that properly changing the lengths, we can even change some truths while
keeping others. Amazingly with this proper change, the infinite lines of the plane will not bend,
rather become the chords in the disc. Of course, the circle around the disc does not belong to
the disc and the chords are actually infinitely long, because towards the edges, smaller and
smaller real distances of the disc would mean bigger and bigger imaginary distances. Most
importantly, all the simple axioms about the plane remain true, but obviously we’ll have more
non crossing lines to an L through a P outside:

But this tricky idea is still not the point! To see why this meant such a big leap in the history of
human thinking, we have to go back a bit and remember where all the non euclidian
investigations started from. They wanted to prove the parallelity axiom from the other simple
axioms. Then, as an alternate strategy for this, they assumed the parallelity axiom to be false
and tried to reach a contradiction. Finally, Gauss, Bolyai, Lobachevsky realized that such
contradiction will not be obtained, rather an amazing new geometry can be developed. This
personal conviction of them is very admirable, but still didn’t prove that the parallelity axiom
can not be derived from the simpler ones. Beltrami not only created the above mentioned
strange model of plane geometry, but realized that it proves it without a shadow of a doubt, that
the parallelity axiom is not derivable logically from the others. But how can this be if at that
time the logic of mathematics was not even worked out yet. And that’s the whole point!
Beltrami’s realization was the actual seed that spawned the whole new mathematics, Set
Theory and Logic. Indeed, we don’t have to know about sets or mathematical logic, and still
obtain something fundamental about them. Namely, even if we don’t know what “logical”
means exactly, one thing is sure: If from some assumptions, others should follow logically,
then in every reality where those assumptions are true, all those that “logically follow”, should
be true too. Now, in the above disc model of the plane, all the simple axioms of normal plane
are true. But then everything that logically follows from those simple axioms must be true
there too. And of course, the single non crossing through an outside point is not true and so it
can’t be a logical consequence of the simpler axioms.

In the followings, we go back from this giant leap of Beltrami, and simply investigate the
possibilities without the assumption of single non crossing lines. Unlike Gauss, Bolyai and
Lobachevsky who investigated the new possibilities just to see what a wider world may look
like, we will obtain something very positive and amazing for the parallelity axiom itself.
Namely, the first seven theorems will prove that we don’t have to assume a single non crossing
line for all lines and outside points, because one such will automatically imply it for all.
Finally, only the eighth theorem will be a description how the world without single non
crossing lines can look like.
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The crucial assumption for our following theorems is the concept of angle.

Our intuitive conviction that two crossing lines determine a certain angle must be reduced to
the concept of lengths. And indeed, what we really mean by equal angles is the fact that
measuring the same lengths on the sides, we get identical connecting distances.

A A
C’A’=CA,C’B’=CB
C C’ N _
'
A’B’ = AB
B B’

This is actually the definition of equal angles. Then the axiom we need is that once two angles
are equal, the same equality of connecting distances to equal side distances is true for all
possible side distances.

U is unique non crossing with L through P

l

L and U are equidirectional to all connectors.

1.) Iftwo lines are equidirectional to a third, crossing them in P, Q points,
then the lines are mirrored of each other to the M middle of P and Q.

2.)  Such two lines can only cross ina C point that is mirror of itself to M.
3.) a.) Ifsuchtwo lines exist, then all lines going through P and Q will cross.
b.) If there are non crossing lines, one through P and one through Q,

then any equidirectional lines to PQ will not cross.

4.) Ifthere is a non crossing line with L through P,
then any line equidirectional with L to any connector from P is non crossing.

5.) [Ifthereisa U unique non crossing line with L through P,
then U is equidirectional with L to any connector from P.

6.) This U is equidirectional with L to any connector.

1) N PA

Q Q

The same o angle appears at P on the other side of the PQ connector.

Then this means that measuring any distance from P and Q on the two lines in opposite
directions and connecting these P’ and Q’ with the M middle point of PQ will give
identical triangles. Thus, P’M and MQ’ are on one line and equal, so in other words,
indeed, P’ and Q’ are mirrored to M.
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3.)
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First it seems, that such two lines that are mirrored to an M point can’t cross at all.
Indeed, we can argue that if they cross in a C on the right side, then mirroring C to M,
we get a C’ that again must be on both lines. Thus, the two lines would connect the C
and C’ points contradicting that two points determine only one line.

This argument however, is faulty because it assumed that C’ will be a different point
from C.If C’ isthe same as C, then the two lines doesn’t make a contradiction.

Of course, then C is a mirrored point of itself, which seems just as contradictory.

Indeed, then C has a distance from itself. Such C could be called a weird point and can
be easily excluded if we assume that points only have 0 lengths. Yet, we don’t make this
assumption right now, and play with the idea of weird points a little bit longer.

4.)

5)

6.)

Sweeping through all possible connectors from a P point, we obtain all lines through P.

b.) Itis merely an other way of saying a.).
Special case of 3.) b.).

If U weren’t equidirectional with L fora PQ connector, then we could draw an
equidirectional with L through P, which were a different and non crossing by 4.).

This would contradict the assumption of having only one non crossing through P.

Let P’Q’ be a connector, so that P> # P. Let M be the middle of P’Q’.

Lets connect P with M to obtain a Q crossing on L. For this PQ connector the
equidirectionality was proved in 5.). But this means being mirrored to M.

And this means being equidirectional to any line going through M, including P’Q’.

P’ P

Q Q

We already mentioned that the concept of being fix distanced from an L line is controversial.

Now, we still generalize that concept, avoiding the perpendicularity and rather use any
connector as the starting “distance” between the two lines:

L’ is fix distanced with L from a PQ connector if:

P € L’,Q € L and measuring any common distance on L’ and L from P and Q in the
same direction, will lead to P’ and Q’ points that are the same distanced as was PQ.

P P’

’ L’

PP’ = QQ° > PQ’ = PQ.
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T 2 Equidirectionality to two non halving connectors avoids crossing.

L’ is fix distanced with L from one connector.

!

L’ is equidirectional with L to two non halving connectors.

!

L’ is equidirectional with L to all connectors.

l

L’ is fix distanced with L from all connectors.

l

L’ doesn’t cross L.

P 1.) Let the one connector be AB from which L and L’ are fix distanced and let PQ be an
arbitrarily chosen new connector:

A P P’
B Q Q

We measured AP from B to get Q’ and BQ from A to get P’.

Then PQ’ = QP’ because of the fix distancedness. Then since

PP’=AP’—~ AP = BQ- AP and QQ’ = BQ-BQ’ = BQ- AP thus, PP’ = QQ’.
These are in opposite directions, so the lines are indeed equidirectional to PQ.

2.) Let M, and M, be the two middle of the non halving connectors and let PQ be a

third connector. Connect P with M, and M, toobtain A,B on L and then the
same distanced C,D on L’:

The pairs of o , B, v angles in the picture are equal because we used connectors
through M, and M, . All we have to show is that a + = y. And indeed:

L’




3.)

4)
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Let PQ be a connector from which we want to show the fix distancedness. Lets measure
any same distances from P and Q in the same direction to obtain P’ and Q’.

p P’
[

L
Q Q’

PQ’ used as connector, the equidirectionality implies P’Q’ = PQ.

Suppose L and L’ would cross ina C point. Measuring back any same distance from
C on L and L’, we would get a connector to which the fix distancedness would imply
that C is this fix distanced from itself. This seems like again just a weird crossing point
of the two lines, but actually this is a deeper impossibility, because we obtained it by
measuring back arbitrary distances from C. For example, we can measure back a d
distance and obtain a ¢ length connector. Then approaching C arbitrarily close, we
would have points at ¢ distance. This contradicts the triangle inequality.

Triangles if there are no weird points.

1)

2)
3.)
4)

1)

2)

Outer angle at a corner can’t be equal to the inner angle at an other corner.

Outer angle at a corner is bigger than the inner angle at an other corner.
Two inner angles together are less than 180°.

The three inner angles together are less or equal to 180°.

C A c

We measured the BC length from A on the continuation of CA to obtain C’.
If a wereequalto B,thenthe ABC triangle were identical with ABC’.

But then the angle at B, in the ABC’ triangle would be also «.
Thus, the full angle at Bwere o + B = a + a = 180° and so, C, B, C’ were on a line

contradicting that A,B,C is a triangle that is, B is not on the < CA > line.
Of course again, this contradiction would be avoided if C and C’ were the same points.
If there are no such weird points, then the contradiction proves that a # .

By 1.) we only have to show that o <  is impossible. If this were the case, then

measuring o on AB at B, we would get a new triangle leading to the same
contradiction as in 1.):
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3.) By 2., a >, thusadding a tobothsides, a + a =180° > a + f.

4.) Let a < B,thatis BC < AC. B i

C A
Lets mirror C to the M middle of AB to getanew B’.

AB’=BC < AC > ¢y < B’ =y =2 7vy°Z %

The angle sum of the A, B’, C triangleis: a + B +y -y + vy’ = a+p +vy.

So, if the angle sum of the A, B, C triangle were 180° + &, then so would be of the

A, B’, C triangle but with having an angle half or less than 7.

Repeating such replacements, we would reach a triangle with 180° + & angle sum, but
with one angle being less than 3.

Then, the other two angles would be still more than 180°, contradicting 3.).

T4 Triangles for fix base line and corner above.

A triangle based on L and cornered across at P has 180° angle sum.

l

An L’ line through P is equidirectional with L to two connectors from P.

l

L’ is equidirectional to all connectors.

l

Any triangle based on L and cornered at P has 180° angle sum.

P 1) P

2.) Follows from 1.) and T, 1.) because PQ and PQ’ are non halving.

3.) The picture above in 1.) proves it again.
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TS Triangles for changing lines.

There is an L’ so that they are equidirectional to two connectors from P € L’

!

There is a triangle with 180° angle sum.

!

Any triangle has 180° angle sum.

!

All L and L’ that are equidirectional to one connector, are equidirectional to all connectors.

P 1.) Trivial again by picture in proof of T4 1.).

2.) By previous theorem, if an A, B, C triangle has 180° angle sum, then all triangles with
a common corner and base line across will be such again. With this trick, from A, B, C
we can reach any A’, B’ C’. Indeed, lets place A over A’ and B onto <A’B’>:

ABC=180° - ACD=180° - ADC=180° - A’B’C’ = 180°.

3.) Follows from 1.) and T, 1.).

T6 U is equidirectional with L to two connectors from P € U
!

U is unique non crossing with L through P.

P 1.) Iftwo L,, L, lines are non crossing with L, through P, then all L’ lines in between
them are not crossing either. Thus, the non crossings form a “bundle”.




2))

3.)

4)

17
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If two connectors from P goin o and B to L and there is a line through P
equidirectional to both connectors, then the & angle of the non crossing bundle is

smaller than o + f3.
P\
B ’\\ a

There are arbitrary small angled connectors to a line.
Lets start with any B angled PQ connector and measure the connector on L to geta

new Q’. The PQ’ connector must have less than % angle by Ts 4.).

And so on, we always get less than half of the previous angles.

P

B \ \ \

e\ .¢ \<E Q” \
4

< —

2

o0 |™

If there is an L’ line through P that is equidirectional to two connectors from P,

then the bundle is a single line.

Indeed, by T, 1.) this line is equidirectional to all connectors from P.

Then we can apply 3.) in both directions to obtain pairs of arbitrary flat connectors to
which this line is equidirectional.

Thus, by 2.), the non crossing bundle must have 0 angle, that is L’ is the single non
crossing.

There is a unique non crossing U line with a fix L through a fix P

!

There is a unique non crossing U line with any L through any P outside.

P By T; 5.),and Ts all L lines and P outside have an L’ equidirectional to all connectors.
Thus, by Te this L’ isthe U unique non crossing through P.
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If there are more non crossings with L through a P point then:

1.) The edge lines of the non crossing bundle through P are non crossing either.
2.) All non edge non crossings are equidirectional to exactly one connector.
3.) The connectors and the equidirectional lines to them turn towards each other.

If there are no non crossings with L through a P point then:
4.)  All lines through P are equidirectional to exactly one connector.
5.) The connectors and the equidirectional lines to them turn in the same direction.

1.) A crossing line has other crossing ones arbitrary close in both directions.

The edge of the non crossings has only close ones in one direction.

2.) Lets draw the perpendicular connector from P and draw a perpendicular line to this at P.
This will be the middle line of the bundle which is equidirectional with L to this
perpendicular connector. Any other L’ line inside the bundle will have an o angle to
this middle one and P to the edge. It will also lean toward L on one side, say the right.
Lets change the perpendicular connector toward the right to flatter and flatter positions.

It’s vy angleto L will go from 90° to 0°. On the other hand, its angle to L* will go

from 90° — o to P. Thus, the two angles will be equal at exactly one position of the
connector:

We already mentioned Beltrami’s model for more non crossing lines through a point.

Strangely, for the “weirder” no non crossing lines, there was a model already known for two
thousand years. Indeed, the spherical geometry was investigated by the greeks.

The farthest, opposite two points of a sphere called antipodal. On the earth, such are the north
and south pole. Of course, every P point has an antipodal pair, because we can simply mirror
P to the center of the sphere. The circle’s going through antipodal points, that is having their
center at the center of the sphere are called main circles. On the earth, such are the equator and
the time zone circles. Every two points determine a main circle going through them, because
the center of the sphere and the two points are on a plane that crosses the sphere in this circle.
Also, between any two points, this main circle is the shortest path on the sphere. So as we see,
the main circles are behaving as lines. Unfortunately, we were wrong above because not any
two points will determine a unique main circle. The exceptions are the antipodal pairs through
which infinite many main circle go, like the time zones through the north and south pole. An
other consequence of this “error” is that if the main circles are the lines, then two lines will
cross not in one point but rather in the two antipodal ones. With a simple trick, we can get over
this problem, and obtain a “perfect” model. The antipodal pairs should be regarded as single
points. The strangeness of these new points is then easy to see, because going on a main circle
we arrive back to our points, in fact not in a full circle, but already at halfway.

So the lengths are limited!
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Part Three: Complex Numbers
1. Definitions

The real numbers are the comparing of distances or if we choose a unit length on a line, then

the points of the line themselves can be regarded as the real numbers.

It is amazingly simple to generalize this and regard all points of a plane as numbers.

This has consequences in two directions: In algebra, equations will have wider solutions and in
geometry the coordinate systems become simpler.

And yet, this whole approach is avoided in high schools. This is solely due to the reluctance of
teachers who themselves are unfamiliar with complex numbers. But complex numbers can not
be avoided! Engineering and science must use them! So in tertiary education they are
introduced but seem strange to students and so the cycle repeats, complex numbers stay out of
basic mathematics. It is interesting to compare the complex numbers with calculus. The
question whether calculus should be taught in high schools always reoccurs, but complex
numbers are consistently avoided, even though they are much more basic and simpler too.

I hope the followings will convince the readers to give a chance to complex numbers in the
wider education.

The points of a plane can be regarded as positions if we choose a fix O origin.

1.) The simplest operation of a point is the opposite of it, that is — P from P.
This means the mirroring of P to the fix O:

-P

2.) The addition of two points, that is P + Q means that the first, that is P, is regarded as
anew origin and Q is positioned from there. Thus, the OQ distance is shifted along the
OP line until O goes to P.

?P+Q
Qe

1

3.)

1) P+Q=Q+P
2) Q-P+P=0Q



-78 -

1.) Q P+Q=Q+P

O

If OP is shiftedto Q, to get P+ Q then O, P, Q, P+ Q is a parallelogram, so OQ is
shifted to the same point.
2.) Q-—P isshifting Q towards —P and then + P is shifting it back to Q.

To define the multiplication of points, we need more than a fix O point of origin, namely we
need a fix U unit point too. The u distance between O and U is the unit length.

O u U
The same basic idea is used to define PeQ = PQ as was for P + Q, that is Q will be

repositioned by using P. But now not a shifting is applied, rather a turning and changing of
unit length. So, P will be regarded as the new U.

PQ

O U

The “repositioning” means that PQ must be relative to OP the same as Q was to OU.
In other words, the O, U, Q triangle must be similar to the O, P , PQ.

Thus, the Q, O, U angle is the same as the PQ , O, P. And O, PQ length is OQ %

| P| := distance of P from O, using u as unit.
<P> := angle of OP from OU.

P
| P
<p>

O u=1 U

L) [PQ[=[P[[Q]
2) <PQ> = <P>+<Q>

[Pl _

PQ Ly IPQI=1QI=~ = [P]IQ]

2) <PQ> = AnglePQ,0O,U =
Angle P,O,U + AnglePQ,O,P =
<P>+ AngleQ,0,U = <P>+<Q>
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PQ = QP
Both | | and < > are the same for the two sides.

P the point R sothat RQ = P.

Q
<%> = <pP> - <Q>

‘E‘ _ |
Q| Q|
(P+ QR =PR+ QR

The turning and increase of a parallelogram keeps it a parallelogram.

O = = O~ -

1.) All P points of the plane are determined by their | P | distance and <P> angle.
The u=1 distanced points from O, that is the points on the unit circle are called the unit

points. These are determined by merely their a angle and can be denoted as «.

A.
0] U

The unit vector of a P point is the unit vector on O P and is denoted as P°.
Thus, P°=<P> and P = |P|P° = |P| <P>.

2.)  Our earlier rules for the multiplication of points can now be expressed as:

PQ=|P|<P> [Q|<Q> =paqP =pqa P =pq a+p

3.) The bar notation is especially useful for concrete angles. In fact, U itself can be denoted
as the zero angled unit vector, that is 0 . The four perpendicular unit vectors are:
0,90,180=-0, 270 = =90 = —-90

S
I
|
(=]

18 U=20

90
O[
l o
270 = —90 = — 90

Usually 0 , 90 ,— 0 ,—% are abbreviatedas 1,1 ,-1,—1.
In other words, the unit vector is identified with the number unit 1.

T 1) —1P= —P
2) it = -1

3) L=
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1) —1P =180 pa =pa+180 =p-a = —pa =P
2.) i2=1ii =9090 = 180 = —1
3) L= 0 - To0- 90 =i
i 90
2. Exponentiation
(pa)n = pa p& pa =pp...p oa+0o+...+a =(pn)ﬁ
pa)* = ) ax
= - + +
L) e pa) = )Y =p*Y ax+y)
2) (o) @) = paqp)* = p*q* (@+p)x
—.X —\X X
3y [QJ - (2] @
@p) qp q
I _
4.) [(pa)x} = o)™ = p axy
X/ P :=setofall Q points for which Q* =

For x = 2 we omit this 2 from the root.
1 1 1

PX = (pa)X = pX % e NP
1 1 1
Npa =¥ (&) . pX (2439 L pr (%4250

For x = n natural, there are exactly n roots. For example:

Ji =+vo ={1§,1(@)} = {0,180} = {1,-1} ,
J-1 =180 = {90,270} = {i,i}

VT = Vo - {0,120, 20)

V=T -T50 - {60,180, 300} - {60, -1, 300}

4\/_
V-1 = Y180 - {45

.;;
,_

{0,90, 180 , 270} =

135, 225, 315)
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3. Complex Form

Giving the points of a plane as pa is usually called the polar coordinate form.

We already mentioned in Part 2 Section 4, the Descartes coordinate system.
With the use of the Pythagoras theorem and the sin , cos , tan , so called trigonometric
functions, we can calculate from polar to Descartes and back:

pa = (x,y) = (pcos a,psin a)

(x,y) = pa

Jx2+y? (arctan ) o
X

O X

Only the Descartes coordinate system is usually taught in high school, in spite of the fact that
the polar system is just as useful. For example, Newton’s major result, the derivation of
Kepler’s First Law can much easier be proven with polar coordinates than with Descartes’.

The Descartes system can be dramatically improved if instead of two separate coordinates, the
P point is actually represented as the sum of the coordinates. Of course, x and y can not be
simply added because that would be just an other number on the single real number line.

We need separate notation for the points of the perpendicular y-axis. And this is easy if we use
the 90 = 1 unit on it. Indeed then, y is actually yi,so P=x+yi.

By the way, the letter 1 comes from the word “imaginary”, though in the way we introduced it
there was nothing imaginary about it. But when it was first used it simply meant a number so
that its square is — 1. There is such number on the real number line, so looking from there, it
seems imaginary.

The huge advantage of the x + yi so called complex form is that all the coordinate calculations
come out “by themselves™:

Complex form: P=x+ iy

P+Q=x+iy) £ (vtiw) =X £ v) +i(ytw)

PQ = (x+iy) (v+iw) = xv+ixw +iyv+ i’ yw = (xv—yw) +i(xw + yv)

P X+ly | X+iy y—_jw _ XV—ixw+Hiyv—i’yw  (Xv+yw)+i(yv—xw)
Q V+iw V+iw v—iw vi+w? vi+w?
XV + yW . YV—XW

vitw? vi+w?
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The complex multiplication when calculated from the polar form, even leads to the sums of
sin and cos “by itself”. Repeating it with unit length:

a+p = &B
cos(a+PB)+isin(a+pf) = (cosa +isina)(cosP +isinf) =
cos 0. cos P +icos a sin B +isin o cos p +i” sin a sin B =
cos o cos B —sin a sin B +1i(cos a sin B +sin a cos B) Thus,
cos (a+B) = cos a cos B —sin o sin
sin (a+f) = cos a sin B +sin a cos B

A chosen OU unit interval determines the “grid” points by measuring the unit repeatedly,
horizontally and vertically.

These grid points are the same as the (x , y) coordinate points with x and y whole numbers.
An even better way to regard them is the x + iy complex numbers with x and y wholes.
Then the above listed coordinate calculations of +, — and e show at once that these three
operations of whole complex numbers lead again to wholes.

For +,— this is natural from the original meaning too, because shifting a grid point with a

grid value goes again to a grid. For a PQ = p& qB multiplication, the original meaning of

using Q as the new unit doesn’t explain at once why PQ will be a grid.
The following argument helps:

1.) The 90° turned version of Q, thatis iQ is obviously a grid:

K

iQ

-

O

2.) The repetitions of Q or i1Q in their own directions are again leading to grids.

Then PQ can be visualizedas P = (x,y) = x+ 1y but withnew Q and i1Q units, instead
ofthe 1 and i. In other words, Q is repeated x times, while i1Q is y times. These are grids
by 2.), and so their sum is grid again.

The division of complex wholes of course leads out of them, in other words, the ratio of two
grid points doesn’t have to be a grid. Just as among whole numbers, here too the dividabilities
are the most crucial.
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While among naturals, every number is dividable by 1, and among positive and negative
wholes, or integers, every number is dividable by 1 or — 1, here among the grids, we have
four units, 1, — 1, i, —1 and every grid is dividable by these. So now we should call a grid
composite if it is the product of two grids, both different from the units. The non composite
grids could be also called as primes, just as among the natural numbers.
Gauss was the first who realized this amazing generalization of number theory to two
dimensional grids or complex wholes, and so they are also called Gaussian integers.
The most fundamental theorem about primes among the naturals is that every number can be
uniquely decomposed into prime factors, except of course the order of the members.
This is the reason why 1 1is not regarded as a prime! Indeed, even though it is not a composite,
so it should be a prime, if we allowed it to be a factor then it could be repeated as many times
as we wish, so the decomposition weren’t unique. Similarly, among complex wholes the
1,-1, i, —1 units are not regarded as primes, and then indeed every complex whole or
Gaussian integer can be uniquely decomposed into primes.
Gauss completely answered the question, what grids are the primes. Most amazingly, this shed
new light on the already known fact that half of the natural primes can not be written as square
sums, while the other half can be uniquely. Namely, the 4k — 1 primes can not be, the 4k + 1
canbe. Indeed, 3 # a’+b”> ,5=1"+27,7 = a’+b”> , 11 # a’+b* ,13=27+37,
17=1>+4>,19 # a’ +b” , . . . The “reason” for this is that among the complex wholes
the old 4k + 1 primes are not primes anymore.
Indeed, (1 +i2) (1 -i2) = 1> —i*2* = 1*+2* =5

2+i3)(2-i3) = 2> +3*>=13, ... andsoon.
This of course doesn’t explain why exactly the 4k + 1 ones are such and why the
decomposition is unique. The uniqueness follows from the fact that these two factors are
always primes. And this follows from a basic law proved by Gauss, namely that for grids not

onthe x,y axis, the primes are merely the ones with x* + y” being a natural prime.
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4. Unique Prime Factorization Through The Grid Fractions

I already showed among naturals this same root, so now only repeat the main idea and then

redo the details for gird numbers. The most practical appearance of prime factors comes
through the simplification of fractions. We cross out the common factors of numerators and
denominators. Slowly we get the impression that these omittable factors are inherent to a
number. If we ask people to list all the factors of a number, then they usually proceed by
dividing the number with gradually increasing primes. For example, for 120, they would go as:
120 = 2-60 = 2-2.30 = 2-2-2-15 = 2-2-2-3-5. Of course, we can go in other order
too, for example: 120 = 3-40 = 3-2.20 = 3-2-5-4 = 3.2.5.2.2.

Somehow it feels obvious that we ended up with the same factors. Yet, we can show that this is
far from obvious. Indeed, if we assume the possibility of different breakdowns, leading to
different prime factorizations, then omitting the common prime factors, it would simply mean
that: p,p,-« « « ‘P, = q,°9, . . . -q, with different primes on the left and on the

right. What makes this so impossible? Why couldn’t be that 3-11-13 = 17-19.

Using bigger numbers, it soon becomes clear that nothing makes this impossible, in fact the
two sides can be very close. Yet never equal! The real reason for this is a wider truth about
numbers that don’t even have to be primes, only relative primes. Two numbers are called such
relative primes if they have no common factor, except the obvious 1. If one number is multiple
of the other, that is a =mb then b is still regarded as common factor so a, b are not relative
primes. The simple general fact that makes the different prime products impossible to be equal,
is that if a number divides a product, say a divides bc, but a and b are relative primes, then
a must divide c. Indeed, if this is true, then p,-p,-. . . ‘p, = 9,9, - . . -q, IS

impossible because all p-s are relative primes to the g-s and on the other hand, none of the
p-s can divide any of the g-s. But our new general fact can be put in an even better form and
amazingly it also relates to our elementary school experiences with fractions. Indeed, the a

dividing bc means ma = bc, so % = £ Then,a and b being relative primes means that the
m

% fraction is simplified completely and the claim that a must divide ¢ means that the <

m

fraction is merely an expansion of the % fraction. So what we claim is that a simplified

fraction can only be equal to its expansions. Expansions of course, are not simplified! If we
simplify them, we get back the fractions that we expanded. So in other words, we claim that
two simplified fractions can not be equal. This again seems natural from our experiences with
small fractions, but if we imagine simplified fractions with bigger and bigger numerators and
denominators, then we see the non obviousness of our claim. Luckily here at fractions a simple
and heuristic way of proving our claim also emerges. The fundamental idea is to forget about
the simplified fractions and rather regard the “minimal” ones. For two equal fractions, if one of
them has a smaller numerator, then it obviously has a smaller denominator too, because the
ratios are the same. Thus, we can simply talk about “smaller” and “bigger” versions of equal
fractions. Clearly, there has to be a smallest version among the equal fractions. If we could
prove that all other are merely expansions of this minimal, we were finished, because then the
minimal one were the single non expanded one and thus it were the simplified one too.

The proof of why the non minimal fractions are expansions of the minimal again uses a

heuristic idea. All we need is that if % — A and a< A, that is % is a “bigger” version of
2 then A—a is again a version of the same fraction value, that is a_A-a .
b B-b b B-b

But this is obvious, because:
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a A

— = —_— . b . B

b B /

aB = Ab / —ab

a(B-b) - b(A-a) [/ :b:B-b)
a _ A-a
b B-b
So now, that we see that % = % = % , We can continue subtracting an other a and b

a _ A _ A-a _ A-2a _ A-3a _

b B B-b B-2b B-3b

Sooner or later, we must end up with either % again if A, B were multiples of a, b, or if

from A and B. So,

A -ka
B-kb

version, then this second case is impossible so % had to be an expansion.

not then with an smaller version than 2. Thus, if % was the smallest minimal

o

As we see, the heart of the argument was that A —ka becomes a remainder smaller than a.

If we try to use the same argument for grid points P , P’, then a simple repeated sequence of
subtractions of P doesn’t always get closer to P’ than | P |! But that’s okay, because a whole
multiple of P is now two dimensional! Then, such multiple of P does get closer to P’ than
P. So, the concept of remainder survives! The generalization to two dimension is even better
understood if we use already in one dimension not a < A whole numbers rather a < a’

arbitrary distances:

remainder

Just as the remainder here appeared as we repeated a and placed a’ over it, similarly, a
remainder of a P’ point relative to a P, appears if we “repeat” P. But now repeating means
using it as a unit for a grid system. Luckily, from the four corners of the grid, where P’ is
inside, at least two of them will be closer than | P | and they can be regarded as remainder:

the two dotted
are remainder

2iP

9

iP P+ 1P 2P +1iP 3P +iP




1)

2)

3.)

4.)

5)

6.)

7)

8.)
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For any point in a plane with a grid system, there is a grid point closer than the unit.

For every P, P’ thereisa W grid point, so that: | P>~ WP | < | P|

P P' ) P P'—-MP
If — = - and PP-MP # 0 then - = ———

Q Q Q Q-MQ
If £ is aminimal among some grid ratios, that is,

there are no E' grid ratios, so that E' =P and |P’| < |P],
Q Q Q

then all other % equal grid ratios are expansions of %, that is

P’=WP and Q’=WQ

If % is a simplified grid ratio, that is,

P and Q have no common dividers except the units 1, —1,1,—1 ,

then all other equal grid ratios are expansions of %

% being simplified is also called as P and Q being relative primes.

If P and Q are relative primes, but P divides QP’, then P divides P’.

A grid point is prime if nothing divides it except the units and it is not a unit itself.
If P,P,,... P aresome primes different fromthe Q,,Q,,. .. ,Q, primes,

then P,-P,-... P =Q,-Q, ... -Q, isimpossible.

Every W grid point can be written as a unique product of primes except their order and
changes by multiplying the members with units.

1.),2.) Trivial by the picture before the theorem.

3)

4)

5)

P _ P /0. .0
Q Qv Q s Q
PQ’ - P’Q / —PMQ
P (Q'-MQ) = Q®-MP)  /:(Q-MQ) ., :Q
P _ P'— MP
Q Q'-MQ
By 2.) thereis W sothat |P’—WP| < |P|.

If P° were not WP, then PP — WP = 0 and so by 3.), % were a smaller

version of % , contradicting that it was minimal.
By 4.), all grid ratios are either minimal or expansion of a minimal.

The simplified ones can not be expanded versions, so they are minimal.
Thus, 4.) applies to them.



-87 -

6.) P dividing QP’ means that PQ’ = QP’, that is % = %
Thus, by 5.) if P and Q are relative primes, then P° = WP.
7.) All Q-s are relative primes to all P-s but none of the Q-s can divide any P-s.
8.) Ifa W have two different forms, then crossing out the identical prime factors, we would

still end up with the impossible situation of 7.).

5. Exponentiation With i

We might hope that after the rationals and reals, both of where exponentiation failed to be a

perfect operation, finally among complex numbers, we can succeed and thus, any base to any
exponent, can be meaningful. We are wrong! Here too, only special cases can be defined.

First of all, the general exponentiation is easily reduced to the 1 exponent of a real number and
a turned unit:

“VXH1Yy . TX TNy —\y _ —yi_ yi—i
va) = p)* @)Y andthen @)Y = @)Y | = |pY| lay]

Now, we’ll show that these two cases, that is the 1 exponent of positive reals and turned units
contradict each other.
First of all, the turned units could only be defined in a trivial way by simply remaining the

same. Indeed, even for the simplest turn, that is 180 = —1:
.92 i , .
[(—1)1} = [(—1)2} — =1 so (<)) e J1 =41, -1}

(=1)" =1 isimpossible, because raising both sides to i would give:

N 2 ‘
-Di'= (=)' =(=1)"=-1=1" =1 acontradiction.

So indeed, (—1)' = —1 can only be. But then this inherits to all turns too:

. i o o 2
[ e s 480
(a)l — (180)180 — [(_1)1}180 = [—1]180 = [180] = o

Even if we accepted this trivial way of defining the 1 exponentiation of turned units, it would
make the other half, that is the 1 exponentiation of positive real numbers impossible for

1

anything else than the real unit 1. Indeed, let x° = pa = x” o . Then:

N [X%T _ [XBT a-[xi]"a - [Xﬁa}ﬁa:

2
XB (afp+a) .Thus, afp+a =0 andso, p =—1 because a=0.

1 _ _p°

Then, — = x
X

= x andso,x = 1.

Thus, the choice is quite logical! We drop the idea of defining i1 exponents for turned units
and rather define it for all positive real numbers.
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Amazingly, the turned units will be still remaining with us, because if the 1 exponent of one a
positive real number is unit length, that is o then all other b-s will become so too.

Indeed, if a' = o and b=a™ then, b’ = (a™)' = @)™ = (a)" = ma.

So we only have to define this o for a concrete a positive, not 1, real number and then, the
i exponents of all others are determined at once. Or an even better idea is simply to choose the
a real number for which a' is the simplest turned unit, namely 180 = — 1.

And then, forany b=a™ , b’ = m 180.

Euler chose this a number to be e™, so he defined (e™)' =—1.
The reason for this choice is explained in the following section:

6. Euler’s Formula

Euler discovered many infinite sums, including the following three:

2 3
e’ = 1+ 2 + 2 + 2 4 .
1 2! 3!
2 4 6 8
cos a = 1 -2 + 2 _a 42
2! 4! 6! 8!
3 5 7 9
3! 5! 7! 9!

(Elementary derivation of these can be found in the book Infinite Sums)

He also knew that:

Thus, if we write in the e* sum ia inplace of a, then we obtain:

e’ = |+ a4 (ia)° + (ia)° + (ia)° + =
1 2! 3! 4!
2 3 4 5 6 7 8 9
1+ i@ - & & a3 453 a2 ;a3 a3 ;a0
1 2! 3! 4 5! 6! 7! 8! 9!

As we see, the odd members (marked) give exactly cos a, while the rest of them 1 multiplied
with the members of sin a. Thus:

e!® = cosa + isina

In the sums for cos and sin, the a argument had to be measured not as angles, but as the
circumference of the unit circle. This is also called as the radian. For example, a = 180°
corresponds to a= m because that’s the length of the half circle.

180

cosa + isina isitselfa P point, namely a unit with o = a — turn.
T
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_______ P
isin o |
! a (radian)
5 = b 180
o "
n (radian) % 180° cos o
Thus, eia = (ea)i — cosa + isina = al80
T

In particular, with a= =: ein = (en)i = 180=—-1.
1 1

From this e' can be calculated as e' = (eiﬁ)7t = (ﬁ))n - 180
T

Then, for any b= e™ base, we can easily calculate the b' power too:

b= (") = @) = (132)M = m 180,

T T
The m exponent here is also called the natural logarithm or In of b and thus,
b' = Inb 180,

T

From the 1 exponentiation we can easily go to any complex exponent:
BXTY = pX Y = bX oY) = X (In®Y) 1By = pX (ymb 180)= pX (yInp130),
T T T

So as we see, in the exponentiation with an x + iy complex number, the x real part

determines the length b™ , while the y imaginary part determines the angle yInb @:
T
Xt

X +1y

y1Inb180
T



